Documentation

Mathlib.GroupTheory.Coxeter.Length

The length function, reduced words, and descents #

Throughout this file, B is a type and M : CoxeterMatrix B is a Coxeter matrix. cs : CoxeterSystem M W is a Coxeter system; that is, W is a group, and cs holds the data of a group isomorphism W ≃* M.group, where M.group refers to the quotient of the free group on B by the Coxeter relations given by the matrix M. See Mathlib/GroupTheory/Coxeter/Basic.lean for more details.

Given any element $w \in W$, its length (CoxeterSystem.length), denoted $\ell(w)$, is the minimum number $\ell$ such that $w$ can be written as a product of a sequence of $\ell$ simple reflections: $$w = s_{i_1} \cdots s_{i_\ell}.$$ We prove for all $w_1, w_2 \in W$ that $\ell (w_1 w_2) \leq \ell (w_1) + \ell (w_2)$ and that $\ell (w_1 w_2)$ has the same parity as $\ell (w_1) + \ell (w_2)$.

We define a reduced word (CoxeterSystem.IsReduced) for an element $w \in W$ to be a way of writing $w$ as a product of exactly $\ell(w)$ simple reflections. Every element of $W$ has a reduced word.

We say that $i \in B$ is a left descent (CoxeterSystem.IsLeftDescent) of $w \in W$ if $\ell(s_i w) < \ell(w)$. We show that if $i$ is a left descent of $w$, then $\ell(s_i w) + 1 = \ell(w)$. On the other hand, if $i$ is not a left descent of $w$, then $\ell(s_i w) = \ell(w) + 1$. We similarly define right descents (CoxeterSystem.IsRightDescent) and prove analogous results.

Main definitions #

References #

Length #

noncomputable def CoxeterSystem.length {B : Type u_1} {W : Type u_2} [Group W] {M : CoxeterMatrix B} (cs : CoxeterSystem M W) (w : W) :

The length of w; i.e., the minimum number of simple reflections that must be multiplied to form w.

Equations
Instances For
    theorem CoxeterSystem.exists_reduced_word {B : Type u_1} {W : Type u_2} [Group W] {M : CoxeterMatrix B} (cs : CoxeterSystem M W) (w : W) :
    ∃ (ω : List B), ω.length = cs.length w w = cs.wordProd ω
    theorem CoxeterSystem.length_wordProd_le {B : Type u_1} {W : Type u_2} [Group W] {M : CoxeterMatrix B} (cs : CoxeterSystem M W) (ω : List B) :
    cs.length (cs.wordProd ω) ω.length
    @[simp]
    theorem CoxeterSystem.length_one {B : Type u_1} {W : Type u_2} [Group W] {M : CoxeterMatrix B} (cs : CoxeterSystem M W) :
    cs.length 1 = 0
    @[simp]
    theorem CoxeterSystem.length_eq_zero_iff {B : Type u_1} {W : Type u_2} [Group W] {M : CoxeterMatrix B} (cs : CoxeterSystem M W) {w : W} :
    cs.length w = 0 w = 1
    @[simp]
    theorem CoxeterSystem.length_inv {B : Type u_1} {W : Type u_2} [Group W] {M : CoxeterMatrix B} (cs : CoxeterSystem M W) (w : W) :
    cs.length w⁻¹ = cs.length w
    theorem CoxeterSystem.length_mul_le {B : Type u_1} {W : Type u_2} [Group W] {M : CoxeterMatrix B} (cs : CoxeterSystem M W) (w₁ w₂ : W) :
    cs.length (w₁ * w₂) cs.length w₁ + cs.length w₂
    theorem CoxeterSystem.length_mul_ge_length_sub_length {B : Type u_1} {W : Type u_2} [Group W] {M : CoxeterMatrix B} (cs : CoxeterSystem M W) (w₁ w₂ : W) :
    cs.length w₁ - cs.length w₂ cs.length (w₁ * w₂)
    theorem CoxeterSystem.length_mul_ge_length_sub_length' {B : Type u_1} {W : Type u_2} [Group W] {M : CoxeterMatrix B} (cs : CoxeterSystem M W) (w₁ w₂ : W) :
    cs.length w₂ - cs.length w₁ cs.length (w₁ * w₂)
    theorem CoxeterSystem.length_mul_ge_max {B : Type u_1} {W : Type u_2} [Group W] {M : CoxeterMatrix B} (cs : CoxeterSystem M W) (w₁ w₂ : W) :
    (cs.length w₁ - cs.length w₂) (cs.length w₂ - cs.length w₁) cs.length (w₁ * w₂)
    def CoxeterSystem.lengthParity {B : Type u_1} {W : Type u_2} [Group W] {M : CoxeterMatrix B} (cs : CoxeterSystem M W) :

    The homomorphism that sends each element w : W to the parity of the length of w. (See lengthParity_eq_ofAdd_length.)

    Equations
    • cs.lengthParity = cs.lift fun (x : B) => Multiplicative.ofAdd 1,
    Instances For
      theorem CoxeterSystem.lengthParity_simple {B : Type u_1} {W : Type u_2} [Group W] {M : CoxeterMatrix B} (cs : CoxeterSystem M W) (i : B) :
      cs.lengthParity (cs.simple i) = Multiplicative.ofAdd 1
      theorem CoxeterSystem.lengthParity_comp_simple {B : Type u_1} {W : Type u_2} [Group W] {M : CoxeterMatrix B} (cs : CoxeterSystem M W) :
      cs.lengthParity cs.simple = fun (x : B) => Multiplicative.ofAdd 1
      theorem CoxeterSystem.lengthParity_eq_ofAdd_length {B : Type u_1} {W : Type u_2} [Group W] {M : CoxeterMatrix B} (cs : CoxeterSystem M W) (w : W) :
      cs.lengthParity w = Multiplicative.ofAdd (cs.length w)
      theorem CoxeterSystem.length_mul_mod_two {B : Type u_1} {W : Type u_2} [Group W] {M : CoxeterMatrix B} (cs : CoxeterSystem M W) (w₁ w₂ : W) :
      cs.length (w₁ * w₂) % 2 = (cs.length w₁ + cs.length w₂) % 2
      @[simp]
      theorem CoxeterSystem.length_simple {B : Type u_1} {W : Type u_2} [Group W] {M : CoxeterMatrix B} (cs : CoxeterSystem M W) (i : B) :
      cs.length (cs.simple i) = 1
      theorem CoxeterSystem.length_eq_one_iff {B : Type u_1} {W : Type u_2} [Group W] {M : CoxeterMatrix B} (cs : CoxeterSystem M W) {w : W} :
      cs.length w = 1 ∃ (i : B), w = cs.simple i
      theorem CoxeterSystem.length_mul_simple_ne {B : Type u_1} {W : Type u_2} [Group W] {M : CoxeterMatrix B} (cs : CoxeterSystem M W) (w : W) (i : B) :
      cs.length (w * cs.simple i) cs.length w
      theorem CoxeterSystem.length_simple_mul_ne {B : Type u_1} {W : Type u_2} [Group W] {M : CoxeterMatrix B} (cs : CoxeterSystem M W) (w : W) (i : B) :
      cs.length (cs.simple i * w) cs.length w
      theorem CoxeterSystem.length_mul_simple {B : Type u_1} {W : Type u_2} [Group W] {M : CoxeterMatrix B} (cs : CoxeterSystem M W) (w : W) (i : B) :
      cs.length (w * cs.simple i) = cs.length w + 1 cs.length (w * cs.simple i) + 1 = cs.length w
      theorem CoxeterSystem.length_simple_mul {B : Type u_1} {W : Type u_2} [Group W] {M : CoxeterMatrix B} (cs : CoxeterSystem M W) (w : W) (i : B) :
      cs.length (cs.simple i * w) = cs.length w + 1 cs.length (cs.simple i * w) + 1 = cs.length w

      Reduced words #

      def CoxeterSystem.IsReduced {B : Type u_1} {W : Type u_2} [Group W] {M : CoxeterMatrix B} (cs : CoxeterSystem M W) (ω : List B) :

      The proposition that ω is reduced; that is, it has minimal length among all words that represent the same element of W.

      Equations
      • cs.IsReduced ω = (cs.length (cs.wordProd ω) = ω.length)
      Instances For
        @[simp]
        theorem CoxeterSystem.isReduced_reverse_iff {B : Type u_1} {W : Type u_2} [Group W] {M : CoxeterMatrix B} (cs : CoxeterSystem M W) (ω : List B) :
        cs.IsReduced ω.reverse cs.IsReduced ω
        theorem CoxeterSystem.IsReduced.reverse {B : Type u_1} {W : Type u_2} [Group W] {M : CoxeterMatrix B} {cs : CoxeterSystem M W} {ω : List B} (hω : cs.IsReduced ω) :
        cs.IsReduced ω.reverse
        theorem CoxeterSystem.exists_reduced_word' {B : Type u_1} {W : Type u_2} [Group W] {M : CoxeterMatrix B} (cs : CoxeterSystem M W) (w : W) :
        ∃ (ω : List B), cs.IsReduced ω w = cs.wordProd ω
        theorem CoxeterSystem.IsReduced.take {B : Type u_1} {W : Type u_2} [Group W] {M : CoxeterMatrix B} {cs : CoxeterSystem M W} {ω : List B} (hω : cs.IsReduced ω) (j : ) :
        cs.IsReduced (List.take j ω)
        theorem CoxeterSystem.IsReduced.drop {B : Type u_1} {W : Type u_2} [Group W] {M : CoxeterMatrix B} {cs : CoxeterSystem M W} {ω : List B} (hω : cs.IsReduced ω) (j : ) :
        cs.IsReduced (List.drop j ω)
        theorem CoxeterSystem.not_isReduced_alternatingWord {B : Type u_1} {W : Type u_2} [Group W] {M : CoxeterMatrix B} (cs : CoxeterSystem M W) (i i' : B) {m : } (hM : M.M i i' 0) (hm : m > M.M i i') :
        ¬cs.IsReduced (alternatingWord i i' m)

        Descents #

        def CoxeterSystem.IsLeftDescent {B : Type u_1} {W : Type u_2} [Group W] {M : CoxeterMatrix B} (cs : CoxeterSystem M W) (w : W) (i : B) :

        The proposition that i is a left descent of w; that is, $\ell(s_i w) < \ell(w)$.

        Equations
        • cs.IsLeftDescent w i = (cs.length (cs.simple i * w) < cs.length w)
        Instances For
          def CoxeterSystem.IsRightDescent {B : Type u_1} {W : Type u_2} [Group W] {M : CoxeterMatrix B} (cs : CoxeterSystem M W) (w : W) (i : B) :

          The proposition that i is a right descent of w; that is, $\ell(w s_i) < \ell(w)$.

          Equations
          • cs.IsRightDescent w i = (cs.length (w * cs.simple i) < cs.length w)
          Instances For
            theorem CoxeterSystem.not_isLeftDescent_one {B : Type u_1} {W : Type u_2} [Group W] {M : CoxeterMatrix B} (cs : CoxeterSystem M W) (i : B) :
            ¬cs.IsLeftDescent 1 i
            theorem CoxeterSystem.not_isRightDescent_one {B : Type u_1} {W : Type u_2} [Group W] {M : CoxeterMatrix B} (cs : CoxeterSystem M W) (i : B) :
            ¬cs.IsRightDescent 1 i
            theorem CoxeterSystem.isLeftDescent_inv_iff {B : Type u_1} {W : Type u_2} [Group W] {M : CoxeterMatrix B} (cs : CoxeterSystem M W) {w : W} {i : B} :
            cs.IsLeftDescent w⁻¹ i cs.IsRightDescent w i
            theorem CoxeterSystem.isRightDescent_inv_iff {B : Type u_1} {W : Type u_2} [Group W] {M : CoxeterMatrix B} (cs : CoxeterSystem M W) {w : W} {i : B} :
            cs.IsRightDescent w⁻¹ i cs.IsLeftDescent w i
            theorem CoxeterSystem.exists_leftDescent_of_ne_one {B : Type u_1} {W : Type u_2} [Group W] {M : CoxeterMatrix B} (cs : CoxeterSystem M W) {w : W} (hw : w 1) :
            ∃ (i : B), cs.IsLeftDescent w i
            theorem CoxeterSystem.exists_rightDescent_of_ne_one {B : Type u_1} {W : Type u_2} [Group W] {M : CoxeterMatrix B} (cs : CoxeterSystem M W) {w : W} (hw : w 1) :
            ∃ (i : B), cs.IsRightDescent w i
            theorem CoxeterSystem.isLeftDescent_iff {B : Type u_1} {W : Type u_2} [Group W] {M : CoxeterMatrix B} (cs : CoxeterSystem M W) {w : W} {i : B} :
            cs.IsLeftDescent w i cs.length (cs.simple i * w) + 1 = cs.length w
            theorem CoxeterSystem.not_isLeftDescent_iff {B : Type u_1} {W : Type u_2} [Group W] {M : CoxeterMatrix B} (cs : CoxeterSystem M W) {w : W} {i : B} :
            ¬cs.IsLeftDescent w i cs.length (cs.simple i * w) = cs.length w + 1
            theorem CoxeterSystem.isRightDescent_iff {B : Type u_1} {W : Type u_2} [Group W] {M : CoxeterMatrix B} (cs : CoxeterSystem M W) {w : W} {i : B} :
            cs.IsRightDescent w i cs.length (w * cs.simple i) + 1 = cs.length w
            theorem CoxeterSystem.not_isRightDescent_iff {B : Type u_1} {W : Type u_2} [Group W] {M : CoxeterMatrix B} (cs : CoxeterSystem M W) {w : W} {i : B} :
            ¬cs.IsRightDescent w i cs.length (w * cs.simple i) = cs.length w + 1
            theorem CoxeterSystem.isLeftDescent_iff_not_isLeftDescent_mul {B : Type u_1} {W : Type u_2} [Group W] {M : CoxeterMatrix B} (cs : CoxeterSystem M W) {w : W} {i : B} :
            cs.IsLeftDescent w i ¬cs.IsLeftDescent (cs.simple i * w) i
            theorem CoxeterSystem.isRightDescent_iff_not_isRightDescent_mul {B : Type u_1} {W : Type u_2} [Group W] {M : CoxeterMatrix B} (cs : CoxeterSystem M W) {w : W} {i : B} :
            cs.IsRightDescent w i ¬cs.IsRightDescent (w * cs.simple i) i