Documentation

Mathlib.GroupTheory.GroupAction.SubMulAction

Sets invariant to a MulAction #

In this file we define SubMulAction R M; a subset of a MulAction R M which is closed with respect to scalar multiplication.

For most uses, typically Submodule R M is more powerful.

Main definitions #

Tags #

submodule, mul_action

structure SMulMemClass (S : Type u_1) (R : outParam (Type u_2)) (M : Type u_3) [SMul R M] [SetLike S M] :

SMulMemClass S R M says S is a type of subsets s ≤ M that are closed under the scalar action of R on M.

Note that only R is marked as an outParam here, since M is supplied by the SetLike class instead.

Instances For
    structure VAddMemClass (S : Type u_1) (R : outParam (Type u_2)) (M : Type u_3) [VAdd R M] [SetLike S M] :

    VAddMemClass S R M says S is a type of subsets s ≤ M that are closed under the additive action of R on M.

    Note that only R is marked as an outParam here, since M is supplied by the SetLike class instead.

    Instances For

      Not registered as an instance because R is an outParam in SMulMemClass S R M.

      Not registered as an instance because R is an outParam in SMulMemClass S R M.

      def SetLike.smul {S : Type u'} {R : Type u} {M : Type v} [SMul R M] [SetLike S M] [hS : SMulMemClass S R M] (s : S) :
      SMul R (Subtype fun (x : M) => Membership.mem s x)

      A subset closed under the scalar action inherits that action.

      Equations
      Instances For
        def SetLike.vadd {S : Type u'} {R : Type u} {M : Type v} [VAdd R M] [SetLike S M] [hS : VAddMemClass S R M] (s : S) :
        VAdd R (Subtype fun (x : M) => Membership.mem s x)

        A subset closed under the additive action inherits that action.

        Equations
        Instances For
          theorem SMulMemClass.ofIsScalarTower (S : Type u_1) (M : Type u_2) (N : Type u_3) (α : Type u_4) [SetLike S α] [SMul M N] [SMul M α] [Monoid N] [MulAction N α] [SMulMemClass S N α] [IsScalarTower M N α] :

          This can't be an instance because Lean wouldn't know how to find N, but we can still use this to manually derive SMulMemClass on specific types.

          theorem SetLike.instIsScalarTower {S : Type u'} {R : Type u} {M : Type v} [SMul R M] [SetLike S M] [hS : SMulMemClass S R M] [Mul M] [MulMemClass S M] [IsScalarTower R M M] (s : S) :
          IsScalarTower R (Subtype fun (x : M) => Membership.mem s x) (Subtype fun (x : M) => Membership.mem s x)
          theorem SetLike.instSMulCommClass {S : Type u'} {R : Type u} {M : Type v} [SMul R M] [SetLike S M] [hS : SMulMemClass S R M] [Mul M] [MulMemClass S M] [SMulCommClass R M M] (s : S) :
          SMulCommClass R (Subtype fun (x : M) => Membership.mem s x) (Subtype fun (x : M) => Membership.mem s x)
          theorem SetLike.val_smul {S : Type u'} {R : Type u} {M : Type v} [SMul R M] [SetLike S M] [hS : SMulMemClass S R M] (s : S) (r : R) (x : Subtype fun (x : M) => Membership.mem s x) :
          theorem SetLike.val_vadd {S : Type u'} {R : Type u} {M : Type v} [VAdd R M] [SetLike S M] [hS : VAddMemClass S R M] (s : S) (r : R) (x : Subtype fun (x : M) => Membership.mem s x) :
          theorem SetLike.mk_smul_mk {S : Type u'} {R : Type u} {M : Type v} [SMul R M] [SetLike S M] [hS : SMulMemClass S R M] (s : S) (r : R) (x : M) (hx : Membership.mem s x) :
          Eq (HSMul.hSMul r x, hx) HSMul.hSMul r x,
          theorem SetLike.mk_vadd_mk {S : Type u'} {R : Type u} {M : Type v} [VAdd R M] [SetLike S M] [hS : VAddMemClass S R M] (s : S) (r : R) (x : M) (hx : Membership.mem s x) :
          Eq (HVAdd.hVAdd r x, hx) HVAdd.hVAdd r x,
          theorem SetLike.smul_def {S : Type u'} {R : Type u} {M : Type v} [SMul R M] [SetLike S M] [hS : SMulMemClass S R M] (s : S) (r : R) (x : Subtype fun (x : M) => Membership.mem s x) :
          Eq (HSMul.hSMul r x) HSMul.hSMul r x.val,
          theorem SetLike.vadd_def {S : Type u'} {R : Type u} {M : Type v} [VAdd R M] [SetLike S M] [hS : VAddMemClass S R M] (s : S) (r : R) (x : Subtype fun (x : M) => Membership.mem s x) :
          Eq (HVAdd.hVAdd r x) HVAdd.hVAdd r x.val,
          theorem SetLike.forall_smul_mem_iff {R : Type u_1} {M : Type u_2} {S : Type u_3} [Monoid R] [MulAction R M] [SetLike S M] [SMulMemClass S R M] {N : S} {x : M} :
          Iff (∀ (a : R), Membership.mem N (HSMul.hSMul a x)) (Membership.mem N x)
          def SetLike.smul' {S : Type u'} {M : Type v} {N : Type u_1} {α : Type u_2} [SetLike S α] [SMul M N] [SMul M α] [Monoid N] [MulAction N α] [SMulMemClass S N α] [IsScalarTower M N α] (s : S) :
          SMul M (Subtype fun (x : α) => Membership.mem s x)

          A subset closed under the scalar action inherits that action.

          Equations
          Instances For
            def SetLike.vadd' {S : Type u'} {M : Type v} {N : Type u_1} {α : Type u_2} [SetLike S α] [VAdd M N] [VAdd M α] [AddMonoid N] [AddAction N α] [VAddMemClass S N α] [VAddAssocClass M N α] (s : S) :
            VAdd M (Subtype fun (x : α) => Membership.mem s x)

            A subset closed under the additive action inherits that action.

            Equations
            Instances For
              theorem SetLike.val_smul_of_tower {S : Type u'} {M : Type v} {N : Type u_1} {α : Type u_2} [SetLike S α] [SMul M N] [SMul M α] [Monoid N] [MulAction N α] [SMulMemClass S N α] [IsScalarTower M N α] (s : S) (r : M) (x : Subtype fun (x : α) => Membership.mem s x) :
              theorem SetLike.val_vadd_of_tower {S : Type u'} {M : Type v} {N : Type u_1} {α : Type u_2} [SetLike S α] [VAdd M N] [VAdd M α] [AddMonoid N] [AddAction N α] [VAddMemClass S N α] [VAddAssocClass M N α] (s : S) (r : M) (x : Subtype fun (x : α) => Membership.mem s x) :
              theorem SetLike.mk_smul_of_tower_mk {S : Type u'} {M : Type v} {N : Type u_1} {α : Type u_2} [SetLike S α] [SMul M N] [SMul M α] [Monoid N] [MulAction N α] [SMulMemClass S N α] [IsScalarTower M N α] (s : S) (r : M) (x : α) (hx : Membership.mem s x) :
              Eq (HSMul.hSMul r x, hx) HSMul.hSMul r x,
              theorem SetLike.mk_vadd_of_tower_mk {S : Type u'} {M : Type v} {N : Type u_1} {α : Type u_2} [SetLike S α] [VAdd M N] [VAdd M α] [AddMonoid N] [AddAction N α] [VAddMemClass S N α] [VAddAssocClass M N α] (s : S) (r : M) (x : α) (hx : Membership.mem s x) :
              Eq (HVAdd.hVAdd r x, hx) HVAdd.hVAdd r x,
              theorem SetLike.smul_of_tower_def {S : Type u'} {M : Type v} {N : Type u_1} {α : Type u_2} [SetLike S α] [SMul M N] [SMul M α] [Monoid N] [MulAction N α] [SMulMemClass S N α] [IsScalarTower M N α] (s : S) (r : M) (x : Subtype fun (x : α) => Membership.mem s x) :
              Eq (HSMul.hSMul r x) HSMul.hSMul r x.val,
              theorem SetLike.vadd_of_tower_def {S : Type u'} {M : Type v} {N : Type u_1} {α : Type u_2} [SetLike S α] [VAdd M N] [VAdd M α] [AddMonoid N] [AddAction N α] [VAddMemClass S N α] [VAddAssocClass M N α] (s : S) (r : M) (x : Subtype fun (x : α) => Membership.mem s x) :
              Eq (HVAdd.hVAdd r x) HVAdd.hVAdd r x.val,
              structure SubAddAction (R : Type u) (M : Type v) [VAdd R M] :

              A SubAddAction is a set which is closed under scalar multiplication.

              Instances For
                structure SubMulAction (R : Type u) (M : Type v) [SMul R M] :

                A SubMulAction is a set which is closed under scalar multiplication.

                Instances For
                  def SubMulAction.instSetLike {R : Type u} {M : Type v} [SMul R M] :
                  Equations
                  Instances For
                    def SubAddAction.instSetLike {R : Type u} {M : Type v} [VAdd R M] :
                    Equations
                    Instances For
                      theorem SubMulAction.mem_carrier {R : Type u} {M : Type v} [SMul R M] {p : SubMulAction R M} {x : M} :
                      theorem SubAddAction.mem_carrier {R : Type u} {M : Type v} [VAdd R M] {p : SubAddAction R M} {x : M} :
                      theorem SubMulAction.ext {R : Type u} {M : Type v} [SMul R M] {p q : SubMulAction R M} (h : ∀ (x : M), Iff (Membership.mem p x) (Membership.mem q x)) :
                      Eq p q
                      theorem SubAddAction.ext {R : Type u} {M : Type v} [VAdd R M] {p q : SubAddAction R M} (h : ∀ (x : M), Iff (Membership.mem p x) (Membership.mem q x)) :
                      Eq p q
                      theorem SubMulAction.ext_iff {R : Type u} {M : Type v} [SMul R M] {p q : SubMulAction R M} :
                      Iff (Eq p q) (∀ (x : M), Iff (Membership.mem p x) (Membership.mem q x))
                      theorem SubAddAction.ext_iff {R : Type u} {M : Type v} [VAdd R M] {p q : SubAddAction R M} :
                      Iff (Eq p q) (∀ (x : M), Iff (Membership.mem p x) (Membership.mem q x))
                      def SubMulAction.copy {R : Type u} {M : Type v} [SMul R M] (p : SubMulAction R M) (s : Set M) (hs : Eq s (SetLike.coe p)) :

                      Copy of a sub_mul_action with a new carrier equal to the old one. Useful to fix definitional equalities.

                      Equations
                      • Eq (p.copy s hs) { carrier := s, smul_mem' := }
                      Instances For
                        def SubAddAction.copy {R : Type u} {M : Type v} [VAdd R M] (p : SubAddAction R M) (s : Set M) (hs : Eq s (SetLike.coe p)) :

                        Copy of a sub_mul_action with a new carrier equal to the old one. Useful to fix definitional equalities.

                        Equations
                        • Eq (p.copy s hs) { carrier := s, vadd_mem' := }
                        Instances For
                          theorem SubMulAction.coe_copy {R : Type u} {M : Type v} [SMul R M] (p : SubMulAction R M) (s : Set M) (hs : Eq s (SetLike.coe p)) :
                          Eq (SetLike.coe (p.copy s hs)) s
                          theorem SubAddAction.coe_copy {R : Type u} {M : Type v} [VAdd R M] (p : SubAddAction R M) (s : Set M) (hs : Eq s (SetLike.coe p)) :
                          Eq (SetLike.coe (p.copy s hs)) s
                          theorem SubMulAction.copy_eq {R : Type u} {M : Type v} [SMul R M] (p : SubMulAction R M) (s : Set M) (hs : Eq s (SetLike.coe p)) :
                          Eq (p.copy s hs) p
                          theorem SubAddAction.copy_eq {R : Type u} {M : Type v} [VAdd R M] (p : SubAddAction R M) (s : Set M) (hs : Eq s (SetLike.coe p)) :
                          Eq (p.copy s hs) p
                          def SubMulAction.instBot {R : Type u} {M : Type v} [SMul R M] :
                          Equations
                          Instances For
                            def SubAddAction.instBot {R : Type u} {M : Type v} [VAdd R M] :
                            Equations
                            Instances For
                              Equations
                              Instances For
                                Equations
                                Instances For
                                  theorem SubMulAction.smul_mem {R : Type u} {M : Type v} [SMul R M] (p : SubMulAction R M) {x : M} (r : R) (h : Membership.mem p x) :
                                  theorem SubAddAction.vadd_mem {R : Type u} {M : Type v} [VAdd R M] (p : SubAddAction R M) {x : M} (r : R) (h : Membership.mem p x) :
                                  def SubMulAction.instSMulSubtypeMem {R : Type u} {M : Type v} [SMul R M] (p : SubMulAction R M) :
                                  SMul R (Subtype fun (x : M) => Membership.mem p x)
                                  Equations
                                  Instances For
                                    def SubAddAction.instVAddSubtypeMem {R : Type u} {M : Type v} [VAdd R M] (p : SubAddAction R M) :
                                    VAdd R (Subtype fun (x : M) => Membership.mem p x)
                                    Equations
                                    Instances For
                                      theorem SubMulAction.val_smul {R : Type u} {M : Type v} [SMul R M] {p : SubMulAction R M} (r : R) (x : Subtype fun (x : M) => Membership.mem p x) :
                                      theorem SubAddAction.val_vadd {R : Type u} {M : Type v} [VAdd R M] {p : SubAddAction R M} (r : R) (x : Subtype fun (x : M) => Membership.mem p x) :
                                      def SubMulAction.subtype {R : Type u} {M : Type v} [SMul R M] (p : SubMulAction R M) :
                                      MulActionHom id (Subtype fun (x : M) => Membership.mem p x) M

                                      Embedding of a submodule p to the ambient space M.

                                      Equations
                                      Instances For
                                        def SubAddAction.subtype {R : Type u} {M : Type v} [VAdd R M] (p : SubAddAction R M) :
                                        AddActionHom id (Subtype fun (x : M) => Membership.mem p x) M

                                        Embedding of a submodule p to the ambient space M.

                                        Equations
                                        Instances For
                                          theorem SubMulAction.subtype_apply {R : Type u} {M : Type v} [SMul R M] {p : SubMulAction R M} (x : Subtype fun (x : M) => Membership.mem p x) :
                                          theorem SubAddAction.subtype_apply {R : Type u} {M : Type v} [VAdd R M] {p : SubAddAction R M} (x : Subtype fun (x : M) => Membership.mem p x) :
                                          def SubMulAction.SMulMemClass.toMulAction {R : Type u} {M : Type v} [Monoid R] [MulAction R M] {A : Type u_1} [SetLike A M] [hA : SMulMemClass A R M] (S' : A) :
                                          MulAction R (Subtype fun (x : M) => Membership.mem S' x)

                                          A SubMulAction of a MulAction is a MulAction.

                                          Equations
                                          Instances For
                                            def SubAddAction.SMulMemClass.toAddAction {R : Type u} {M : Type v} [AddMonoid R] [AddAction R M] {A : Type u_1} [SetLike A M] [hA : VAddMemClass A R M] (S' : A) :
                                            AddAction R (Subtype fun (x : M) => Membership.mem S' x)

                                            A SubAddAction of an AddAction is an AddAction.

                                            Equations
                                            Instances For
                                              def SubMulAction.SMulMemClass.subtype {R : Type u} {M : Type v} [Monoid R] [MulAction R M] {A : Type u_1} [SetLike A M] [hA : SMulMemClass A R M] (S' : A) :
                                              MulActionHom id (Subtype fun (x : M) => Membership.mem S' x) M

                                              The natural MulActionHom over R from a SubMulAction of M to M.

                                              Equations
                                              Instances For
                                                def SubAddAction.SMulMemClass.subtype {R : Type u} {M : Type v} [AddMonoid R] [AddAction R M] {A : Type u_1} [SetLike A M] [hA : VAddMemClass A R M] (S' : A) :
                                                AddActionHom id (Subtype fun (x : M) => Membership.mem S' x) M

                                                The natural AddActionHom over R from a SubAddAction of M to M.

                                                Equations
                                                Instances For
                                                  theorem SubMulAction.SMulMemClass.subtype_apply {R : Type u} {M : Type v} [Monoid R] [MulAction R M] {A : Type u_1} [SetLike A M] [hA : SMulMemClass A R M] {S' : A} (x : Subtype fun (x : M) => Membership.mem S' x) :
                                                  theorem SubMulAction.SMulMemClass.coe_subtype {R : Type u} {M : Type v} [Monoid R] [MulAction R M] {A : Type u_1} [SetLike A M] [hA : SMulMemClass A R M] (S' : A) :
                                                  @[deprecated SubMulAction.SMulMemClass.coe_subtype (since := "2025-02-18")]
                                                  theorem SubMulAction.SMulMemClass.coeSubtype {R : Type u} {M : Type v} [Monoid R] [MulAction R M] {A : Type u_1} [SetLike A M] [hA : SMulMemClass A R M] (S' : A) :

                                                  Alias of SubMulAction.SMulMemClass.coe_subtype.

                                                  @[deprecated SubAddAction.SMulMemClass.coe_subtype (since := "2025-02-18")]
                                                  theorem SubAddAction.SMulMemClass.coeSubtype {R : Type u} {M : Type v} [AddMonoid R] [AddAction R M] {A : Type u_1} [SetLike A M] [hA : VAddMemClass A R M] (S' : A) :

                                                  Alias of SubAddAction.SMulMemClass.coe_subtype.

                                                  theorem SubMulAction.smul_of_tower_mem {S : Type u'} {R : Type u} {M : Type v} [Monoid R] [MulAction R M] [SMul S R] [SMul S M] [IsScalarTower S R M] (p : SubMulAction R M) (s : S) {x : M} (h : Membership.mem p x) :
                                                  theorem SubAddAction.vadd_of_tower_mem {S : Type u'} {R : Type u} {M : Type v} [AddMonoid R] [AddAction R M] [VAdd S R] [VAdd S M] [VAddAssocClass S R M] (p : SubAddAction R M) (s : S) {x : M} (h : Membership.mem p x) :
                                                  def SubMulAction.smul' {S : Type u'} {R : Type u} {M : Type v} [Monoid R] [MulAction R M] [SMul S R] [SMul S M] [IsScalarTower S R M] (p : SubMulAction R M) :
                                                  SMul S (Subtype fun (x : M) => Membership.mem p x)
                                                  Equations
                                                  Instances For
                                                    def SubAddAction.vadd' {S : Type u'} {R : Type u} {M : Type v} [AddMonoid R] [AddAction R M] [VAdd S R] [VAdd S M] [VAddAssocClass S R M] (p : SubAddAction R M) :
                                                    VAdd S (Subtype fun (x : M) => Membership.mem p x)
                                                    Equations
                                                    Instances For
                                                      theorem SubMulAction.isScalarTower {S : Type u'} {R : Type u} {M : Type v} [Monoid R] [MulAction R M] [SMul S R] [SMul S M] [IsScalarTower S R M] (p : SubMulAction R M) :
                                                      IsScalarTower S R (Subtype fun (x : M) => Membership.mem p x)
                                                      theorem SubAddAction.isScalarTower {S : Type u'} {R : Type u} {M : Type v} [AddMonoid R] [AddAction R M] [VAdd S R] [VAdd S M] [VAddAssocClass S R M] (p : SubAddAction R M) :
                                                      VAddAssocClass S R (Subtype fun (x : M) => Membership.mem p x)
                                                      theorem SubMulAction.isScalarTower' {S : Type u'} {R : Type u} {M : Type v} [Monoid R] [MulAction R M] [SMul S R] [SMul S M] [IsScalarTower S R M] (p : SubMulAction R M) {S' : Type u_1} [SMul S' R] [SMul S' S] [SMul S' M] [IsScalarTower S' R M] [IsScalarTower S' S M] :
                                                      IsScalarTower S' S (Subtype fun (x : M) => Membership.mem p x)
                                                      theorem SubAddAction.isScalarTower' {S : Type u'} {R : Type u} {M : Type v} [AddMonoid R] [AddAction R M] [VAdd S R] [VAdd S M] [VAddAssocClass S R M] (p : SubAddAction R M) {S' : Type u_1} [VAdd S' R] [VAdd S' S] [VAdd S' M] [VAddAssocClass S' R M] [VAddAssocClass S' S M] :
                                                      VAddAssocClass S' S (Subtype fun (x : M) => Membership.mem p x)
                                                      theorem SubMulAction.val_smul_of_tower {S : Type u'} {R : Type u} {M : Type v} [Monoid R] [MulAction R M] [SMul S R] [SMul S M] [IsScalarTower S R M] (p : SubMulAction R M) (s : S) (x : Subtype fun (x : M) => Membership.mem p x) :
                                                      theorem SubAddAction.val_vadd_of_tower {S : Type u'} {R : Type u} {M : Type v} [AddMonoid R] [AddAction R M] [VAdd S R] [VAdd S M] [VAddAssocClass S R M] (p : SubAddAction R M) (s : S) (x : Subtype fun (x : M) => Membership.mem p x) :
                                                      theorem SubMulAction.smul_mem_iff' {R : Type u} {M : Type v} [Monoid R] [MulAction R M] (p : SubMulAction R M) {G : Type u_1} [Group G] [SMul G R] [MulAction G M] [IsScalarTower G R M] (g : G) {x : M} :
                                                      theorem SubAddAction.vadd_mem_iff' {R : Type u} {M : Type v} [AddMonoid R] [AddAction R M] (p : SubAddAction R M) {G : Type u_1} [AddGroup G] [VAdd G R] [AddAction G M] [VAddAssocClass G R M] (g : G) {x : M} :
                                                      theorem SubMulAction.isCentralScalar {S : Type u'} {R : Type u} {M : Type v} [Monoid R] [MulAction R M] [SMul S R] [SMul S M] [IsScalarTower S R M] (p : SubMulAction R M) [SMul (MulOpposite S) R] [SMul (MulOpposite S) M] [IsScalarTower (MulOpposite S) R M] [IsCentralScalar S M] :
                                                      IsCentralScalar S (Subtype fun (x : M) => Membership.mem p x)
                                                      theorem SubAddAction.isCentralVAdd {S : Type u'} {R : Type u} {M : Type v} [AddMonoid R] [AddAction R M] [VAdd S R] [VAdd S M] [VAddAssocClass S R M] (p : SubAddAction R M) [VAdd (AddOpposite S) R] [VAdd (AddOpposite S) M] [VAddAssocClass (AddOpposite S) R M] [IsCentralVAdd S M] :
                                                      IsCentralVAdd S (Subtype fun (x : M) => Membership.mem p x)
                                                      def SubMulAction.mulAction' {S : Type u'} {R : Type u} {M : Type v} [Monoid R] [MulAction R M] [Monoid S] [SMul S R] [MulAction S M] [IsScalarTower S R M] (p : SubMulAction R M) :
                                                      MulAction S (Subtype fun (x : M) => Membership.mem p x)

                                                      If the scalar product forms a MulAction, then the subset inherits this action

                                                      Equations
                                                      Instances For
                                                        def SubAddAction.addAction' {S : Type u'} {R : Type u} {M : Type v} [AddMonoid R] [AddAction R M] [AddMonoid S] [VAdd S R] [AddAction S M] [VAddAssocClass S R M] (p : SubAddAction R M) :
                                                        AddAction S (Subtype fun (x : M) => Membership.mem p x)
                                                        Equations
                                                        Instances For
                                                          def SubMulAction.mulAction {R : Type u} {M : Type v} [Monoid R] [MulAction R M] (p : SubMulAction R M) :
                                                          MulAction R (Subtype fun (x : M) => Membership.mem p x)
                                                          Equations
                                                          Instances For
                                                            def SubAddAction.addAction {R : Type u} {M : Type v} [AddMonoid R] [AddAction R M] (p : SubAddAction R M) :
                                                            AddAction R (Subtype fun (x : M) => Membership.mem p x)
                                                            Equations
                                                            Instances For
                                                              theorem SubMulAction.val_image_orbit {R : Type u} {M : Type v} [Monoid R] [MulAction R M] {p : SubMulAction R M} (m : Subtype fun (x : M) => Membership.mem p x) :

                                                              Orbits in a SubMulAction coincide with orbits in the ambient space.

                                                              Stabilizers in monoid SubMulAction coincide with stabilizers in the ambient space

                                                              theorem SubMulAction.stabilizer_of_subMul {R : Type u} {M : Type v} [Group R] [MulAction R M] {p : SubMulAction R M} (m : Subtype fun (x : M) => Membership.mem p x) :

                                                              Stabilizers in group SubMulAction coincide with stabilizers in the ambient space

                                                              theorem SubMulAction.zero_mem {R : Type u} {M : Type v} [Semiring R] [AddCommMonoid M] [Module R M] (p : SubMulAction R M) (h : (SetLike.coe p).Nonempty) :
                                                              def SubMulAction.instZeroSubtypeMemOfNonempty {R : Type u} {M : Type v} [Semiring R] [AddCommMonoid M] [Module R M] (p : SubMulAction R M) [n_empty : Nonempty (Subtype fun (x : M) => Membership.mem p x)] :
                                                              Zero (Subtype fun (x : M) => Membership.mem p x)

                                                              If the scalar product forms a Module, and the SubMulAction is not , then the subset inherits the zero.

                                                              Equations
                                                              Instances For
                                                                theorem SubMulAction.neg_mem {R : Type u} {M : Type v} [Ring R] [AddCommGroup M] [Module R M] (p : SubMulAction R M) {x : M} (hx : Membership.mem p x) :
                                                                theorem SubMulAction.neg_mem_iff {R : Type u} {M : Type v} [Ring R] [AddCommGroup M] [Module R M] (p : SubMulAction R M) {x : M} :
                                                                def SubMulAction.instNegSubtypeMem {R : Type u} {M : Type v} [Ring R] [AddCommGroup M] [Module R M] (p : SubMulAction R M) :
                                                                Neg (Subtype fun (x : M) => Membership.mem p x)
                                                                Equations
                                                                Instances For
                                                                  theorem SubMulAction.val_neg {R : Type u} {M : Type v} [Ring R] [AddCommGroup M] [Module R M] (p : SubMulAction R M) (x : Subtype fun (x : M) => Membership.mem p x) :
                                                                  theorem SubMulAction.smul_mem_iff {S : Type u'} {R : Type u} {M : Type v} [GroupWithZero S] [Monoid R] [MulAction R M] [SMul S R] [MulAction S M] [IsScalarTower S R M] (p : SubMulAction R M) {s : S} {x : M} (s0 : Ne s 0) :
                                                                  def SubMulAction.inclusion {M : Type u_1} {α : Type u_2} [Monoid M] [MulAction M α] (s : SubMulAction M α) :
                                                                  MulActionHom id (Subtype fun (x : α) => Membership.mem s x) α

                                                                  The inclusion of a SubMulAction into the ambient set, as an equivariant map

                                                                  Equations
                                                                  Instances For
                                                                    def SubAddAction.inclusion {M : Type u_1} {α : Type u_2} [AddMonoid M] [AddAction M α] (s : SubAddAction M α) :
                                                                    AddActionHom id (Subtype fun (x : α) => Membership.mem s x) α

                                                                    The inclusion of a SubAddAction into the ambient set, as an equivariant map.

                                                                    Equations
                                                                    Instances For

                                                                      The non-zero elements of M are invariant under the action by the units of R.

                                                                      Equations
                                                                      Instances For
                                                                        theorem Units.smul_coe (R : Type u_1) (M : Type u_2) [Monoid R] [AddCommMonoid M] [DistribMulAction R M] (a : Units R) (x : Subtype fun (x : M) => Ne x 0) :
                                                                        theorem Units.orbitRel_nonZero_iff (R : Type u_1) (M : Type u_2) [Monoid R] [AddCommMonoid M] [DistribMulAction R M] (x y : Subtype fun (v : M) => Ne v 0) :