Documentation

Mathlib.GroupTheory.GroupAction.SubMulAction.Closure

Closure and finiteness of SubMulAction and SubAddAction #

def SubMulAction.closure (R : Type u_1) {M : Type u_2} [SMul R M] (s : Set M) :

The SubMulAction generated by a set s.

Equations
Instances For
    def SubAddAction.closure (R : Type u_1) {M : Type u_2} [VAdd R M] (s : Set M) :

    The SubAddAction generated by a set s.

    Equations
    Instances For
      theorem SubMulAction.mem_closure {R : Type u_1} {M : Type u_2} [SMul R M] {s : Set M} {x : M} :
      x closure R s ∀ (p : SubMulAction R M), s px p
      theorem SubAddAction.mem_closure {R : Type u_1} {M : Type u_2} [VAdd R M] {s : Set M} {x : M} :
      x closure R s ∀ (p : SubAddAction R M), s px p
      theorem SubMulAction.subset_closure {R : Type u_1} {M : Type u_2} [SMul R M] {s : Set M} :
      s (closure R s)
      theorem SubAddAction.subset_closure {R : Type u_1} {M : Type u_2} [VAdd R M] {s : Set M} :
      s (closure R s)
      theorem SubMulAction.mem_closure_of_mem {R : Type u_1} {M : Type u_2} [SMul R M] {s : Set M} {x : M} (hx : x s) :
      x closure R s
      theorem SubAddAction.mem_closure_of_mem {R : Type u_1} {M : Type u_2} [VAdd R M] {s : Set M} {x : M} (hx : x s) :
      x closure R s
      theorem SubMulAction.closure_le {R : Type u_1} {M : Type u_2} [SMul R M] {s : Set M} {p : SubMulAction R M} :
      closure R s p s p
      theorem SubAddAction.closure_le {R : Type u_1} {M : Type u_2} [VAdd R M] {s : Set M} {p : SubAddAction R M} :
      closure R s p s p
      theorem SubMulAction.closure_mono {R : Type u_1} {M : Type u_2} [SMul R M] {s t : Set M} (h : s t) :
      theorem SubAddAction.closure_mono {R : Type u_1} {M : Type u_2} [VAdd R M] {s t : Set M} (h : s t) :
      def SubMulAction.FG {R : Type u_1} {M : Type u_2} [SMul R M] (p : SubMulAction R M) :

      A SubMulAction is finitely generated if it is the closure of a finite set.

      Equations
      Instances For
        def SubAddAction.FG {R : Type u_1} {M : Type u_2} [VAdd R M] (p : SubAddAction R M) :

        A SubAddAction is finitely generated if it is the closure of a finite set.

        Equations
        Instances For
          theorem SubMulAction.fg_iff {R : Type u_1} {M : Type u_2} [SMul R M] {p : SubMulAction R M} :
          p.FG ∃ (s : Finset M), p = closure R s
          theorem SubAddAction.fg_iff {R : Type u_1} {M : Type u_2} [VAdd R M] {p : SubAddAction R M} :
          p.FG ∃ (s : Finset M), p = closure R s