Documentation

Mathlib.GroupTheory.Submonoid.Centralizer

Centralizers of magmas and monoids #

Main definitions #

We provide Subgroup.centralizer, AddSubgroup.centralizer in other files.

def Submonoid.centralizer {M : Type u_1} (S : Set M) [Monoid M] :

The centralizer of a subset of a monoid M.

Equations
Instances For

    The centralizer of a subset of an additive monoid.

    Equations
    Instances For
      @[simp]
      theorem Submonoid.coe_centralizer {M : Type u_1} (S : Set M) [Monoid M] :
      (centralizer S) = S.centralizer
      @[simp]
      theorem AddSubmonoid.coe_centralizer {M : Type u_1} (S : Set M) [AddMonoid M] :
      (centralizer S) = S.addCentralizer
      theorem Submonoid.mem_centralizer_iff {M : Type u_1} {S : Set M} [Monoid M] {z : M} :
      z centralizer S gS, g * z = z * g
      theorem AddSubmonoid.mem_centralizer_iff {M : Type u_1} {S : Set M} [AddMonoid M] {z : M} :
      z centralizer S gS, g + z = z + g
      instance Submonoid.decidableMemCentralizer {M : Type u_1} {S : Set M} [Monoid M] (a : M) [Decidable (∀ bS, b * a = a * b)] :
      Equations
      instance AddSubmonoid.decidableMemCentralizer {M : Type u_1} {S : Set M} [AddMonoid M] (a : M) [Decidable (∀ bS, b + a = a + b)] :
      Equations
      theorem Submonoid.centralizer_le {M : Type u_1} {S T : Set M} [Monoid M] (h : S T) :
      theorem AddSubmonoid.centralizer_le {M : Type u_1} {S T : Set M} [AddMonoid M] (h : S T) :
      @[simp]
      @[simp]
      theorem Submonoid.centralizer_centralizer_centralizer (M : Type u_1) [Monoid M] {s : Set M} :
      centralizer s.centralizer.centralizer = centralizer s
      @[simp]
      theorem AddSubmonoid.centralizer_centralizer_centralizer (M : Type u_1) [AddMonoid M] {s : Set M} :
      centralizer s.addCentralizer.addCentralizer = centralizer s
      @[reducible, inline]
      abbrev Submonoid.closureCommMonoidOfComm (M : Type u_1) [Monoid M] {s : Set M} (hcomm : as, bs, a * b = b * a) :

      If all the elements of a set s commute, then closure s is a commutative monoid.

      Equations
      Instances For
        @[reducible, inline]
        abbrev AddSubmonoid.closureAddCommMonoidOfComm (M : Type u_1) [AddMonoid M] {s : Set M} (hcomm : as, bs, a + b = b + a) :

        If all the elements of a set s commute, then closure s forms an additive commutative monoid.

        Equations
        Instances For