Centralizers of magmas and monoids #
Main definitions #
Submonoid.centralizer
: the centralizer of a subset of a monoidAddSubmonoid.centralizer
: the centralizer of a subset of an additive monoid
We provide Subgroup.centralizer
, AddSubgroup.centralizer
in other files.
The centralizer of a subset of a monoid M
.
Equations
- Submonoid.centralizer S = { carrier := S.centralizer, mul_mem' := ⋯, one_mem' := ⋯ }
Instances For
The centralizer of a subset of an additive monoid.
Equations
- AddSubmonoid.centralizer S = { carrier := S.addCentralizer, add_mem' := ⋯, zero_mem' := ⋯ }
Instances For
@[simp]
theorem
Submonoid.coe_centralizer
{M : Type u_1}
(S : Set M)
[Monoid M]
:
↑(centralizer S) = S.centralizer
@[simp]
theorem
AddSubmonoid.coe_centralizer
{M : Type u_1}
(S : Set M)
[AddMonoid M]
:
↑(centralizer S) = S.addCentralizer
theorem
Submonoid.centralizer_toSubsemigroup
{M : Type u_1}
(S : Set M)
[Monoid M]
:
(centralizer S).toSubsemigroup = Subsemigroup.centralizer S
theorem
AddSubmonoid.centralizer_toAddSubsemigroup
{M : Type u_2}
[AddMonoid M]
(S : Set M)
:
(centralizer S).toAddSubsemigroup = AddSubsemigroup.centralizer S
theorem
Submonoid.center_le_centralizer
{M : Type u_1}
[Monoid M]
(s : Set M)
:
center M ≤ centralizer s
theorem
AddSubmonoid.center_le_centralizer
{M : Type u_1}
[AddMonoid M]
(s : Set M)
:
center M ≤ centralizer s
instance
Submonoid.decidableMemCentralizer
{M : Type u_1}
{S : Set M}
[Monoid M]
(a : M)
[Decidable (∀ b ∈ S, b * a = a * b)]
:
Decidable (a ∈ centralizer S)
Equations
- Submonoid.decidableMemCentralizer a = decidable_of_iff' (∀ g ∈ S, g * a = a * g) ⋯
instance
AddSubmonoid.decidableMemCentralizer
{M : Type u_1}
{S : Set M}
[AddMonoid M]
(a : M)
[Decidable (∀ b ∈ S, b + a = a + b)]
:
Decidable (a ∈ centralizer S)
Equations
- AddSubmonoid.decidableMemCentralizer a = decidable_of_iff' (∀ g ∈ S, g + a = a + g) ⋯
theorem
Submonoid.centralizer_le
{M : Type u_1}
{S T : Set M}
[Monoid M]
(h : S ⊆ T)
:
centralizer T ≤ centralizer S
theorem
AddSubmonoid.centralizer_le
{M : Type u_1}
{S T : Set M}
[AddMonoid M]
(h : S ⊆ T)
:
centralizer T ≤ centralizer S
@[simp]
@[simp]
theorem
Submonoid.le_centralizer_centralizer
(M : Type u_1)
[Monoid M]
{s : Submonoid M}
:
s ≤ centralizer ↑(centralizer ↑s)
theorem
AddSubmonoid.le_centralizer_centralizer
(M : Type u_1)
[AddMonoid M]
{s : AddSubmonoid M}
:
s ≤ centralizer ↑(centralizer ↑s)
@[simp]
theorem
Submonoid.centralizer_centralizer_centralizer
(M : Type u_1)
[Monoid M]
{s : Set M}
:
centralizer s.centralizer.centralizer = centralizer s
@[simp]
theorem
AddSubmonoid.centralizer_centralizer_centralizer
(M : Type u_1)
[AddMonoid M]
{s : Set M}
:
centralizer s.addCentralizer.addCentralizer = centralizer s
theorem
Submonoid.closure_le_centralizer_centralizer
{M : Type u_1}
[Monoid M]
(s : Set M)
:
closure s ≤ centralizer ↑(centralizer s)
theorem
AddSubmonoid.closure_le_centralizer_centralizer
{M : Type u_1}
[AddMonoid M]
(s : Set M)
:
closure s ≤ centralizer ↑(centralizer s)
@[reducible, inline]
abbrev
Submonoid.closureCommMonoidOfComm
(M : Type u_1)
[Monoid M]
{s : Set M}
(hcomm : ∀ a ∈ s, ∀ b ∈ s, a * b = b * a)
:
CommMonoid ↥(closure s)
If all the elements of a set s
commute, then closure s
is a commutative monoid.
Equations
- Submonoid.closureCommMonoidOfComm M hcomm = CommMonoid.mk ⋯
Instances For
@[reducible, inline]
abbrev
AddSubmonoid.closureAddCommMonoidOfComm
(M : Type u_1)
[AddMonoid M]
{s : Set M}
(hcomm : ∀ a ∈ s, ∀ b ∈ s, a + b = b + a)
:
AddCommMonoid ↥(closure s)
If all the elements of a set s
commute, then closure s
forms an additive
commutative monoid.