Documentation

Mathlib.LinearAlgebra.AffineSpace.Midpoint

Midpoint of a segment #

Main definitions #

Main theorems #

We do not mark most lemmas as @[simp] because it is hard to tell which side is simpler.

Tags #

midpoint, AddMonoidHom

def midpoint (R : Type u_1) {V : Type u_2} {P : Type u_4} [Ring R] [Invertible 2] [AddCommGroup V] [Module R V] [AddTorsor V P] (x y : P) :
P

midpoint x y is the midpoint of the segment [x, y].

Equations
Instances For
    @[simp]
    theorem AffineMap.map_midpoint {R : Type u_1} {V : Type u_2} {V' : Type u_3} {P : Type u_4} {P' : Type u_5} [Ring R] [Invertible 2] [AddCommGroup V] [Module R V] [AddTorsor V P] [AddCommGroup V'] [Module R V'] [AddTorsor V' P'] (f : P →ᵃ[R] P') (a b : P) :
    f (midpoint R a b) = midpoint R (f a) (f b)
    @[simp]
    theorem AffineEquiv.map_midpoint {R : Type u_1} {V : Type u_2} {V' : Type u_3} {P : Type u_4} {P' : Type u_5} [Ring R] [Invertible 2] [AddCommGroup V] [Module R V] [AddTorsor V P] [AddCommGroup V'] [Module R V'] [AddTorsor V' P'] (f : P ≃ᵃ[R] P') (a b : P) :
    f (midpoint R a b) = midpoint R (f a) (f b)
    theorem AffineEquiv.pointReflection_midpoint_left {R : Type u_1} {V : Type u_2} {P : Type u_4} [Ring R] [Invertible 2] [AddCommGroup V] [Module R V] [AddTorsor V P] (x y : P) :
    @[simp]
    theorem Equiv.pointReflection_midpoint_left {R : Type u_1} {V : Type u_2} {P : Type u_4} [Ring R] [Invertible 2] [AddCommGroup V] [Module R V] [AddTorsor V P] (x y : P) :
    theorem midpoint_comm {R : Type u_1} {V : Type u_2} {P : Type u_4} [Ring R] [Invertible 2] [AddCommGroup V] [Module R V] [AddTorsor V P] (x y : P) :
    midpoint R x y = midpoint R y x
    theorem AffineEquiv.pointReflection_midpoint_right {R : Type u_1} {V : Type u_2} {P : Type u_4} [Ring R] [Invertible 2] [AddCommGroup V] [Module R V] [AddTorsor V P] (x y : P) :
    @[simp]
    theorem Equiv.pointReflection_midpoint_right {R : Type u_1} {V : Type u_2} {P : Type u_4} [Ring R] [Invertible 2] [AddCommGroup V] [Module R V] [AddTorsor V P] (x y : P) :
    theorem midpoint_vsub_midpoint {R : Type u_1} {V : Type u_2} {P : Type u_4} [Ring R] [Invertible 2] [AddCommGroup V] [Module R V] [AddTorsor V P] (p₁ p₂ p₃ p₄ : P) :
    midpoint R p₁ p₂ -ᵥ midpoint R p₃ p₄ = midpoint R (p₁ -ᵥ p₃) (p₂ -ᵥ p₄)
    theorem midpoint_vadd_midpoint {R : Type u_1} {V : Type u_2} {P : Type u_4} [Ring R] [Invertible 2] [AddCommGroup V] [Module R V] [AddTorsor V P] (v v' : V) (p p' : P) :
    midpoint R v v' +ᵥ midpoint R p p' = midpoint R (v +ᵥ p) (v' +ᵥ p')
    theorem midpoint_eq_iff {R : Type u_1} {V : Type u_2} {P : Type u_4} [Ring R] [Invertible 2] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} :
    @[simp]
    theorem midpoint_pointReflection_left {R : Type u_1} {V : Type u_2} {P : Type u_4} [Ring R] [Invertible 2] [AddCommGroup V] [Module R V] [AddTorsor V P] (x y : P) :
    @[simp]
    theorem midpoint_pointReflection_right {R : Type u_1} {V : Type u_2} {P : Type u_4} [Ring R] [Invertible 2] [AddCommGroup V] [Module R V] [AddTorsor V P] (x y : P) :
    @[simp]
    theorem midpoint_vsub_left {R : Type u_1} {V : Type u_2} {P : Type u_4} [Ring R] [Invertible 2] [AddCommGroup V] [Module R V] [AddTorsor V P] (p₁ p₂ : P) :
    midpoint R p₁ p₂ -ᵥ p₁ = 2 (p₂ -ᵥ p₁)
    @[simp]
    theorem midpoint_vsub_right {R : Type u_1} {V : Type u_2} {P : Type u_4} [Ring R] [Invertible 2] [AddCommGroup V] [Module R V] [AddTorsor V P] (p₁ p₂ : P) :
    midpoint R p₁ p₂ -ᵥ p₂ = 2 (p₁ -ᵥ p₂)
    @[simp]
    theorem left_vsub_midpoint {R : Type u_1} {V : Type u_2} {P : Type u_4} [Ring R] [Invertible 2] [AddCommGroup V] [Module R V] [AddTorsor V P] (p₁ p₂ : P) :
    p₁ -ᵥ midpoint R p₁ p₂ = 2 (p₁ -ᵥ p₂)
    @[simp]
    theorem right_vsub_midpoint {R : Type u_1} {V : Type u_2} {P : Type u_4} [Ring R] [Invertible 2] [AddCommGroup V] [Module R V] [AddTorsor V P] (p₁ p₂ : P) :
    p₂ -ᵥ midpoint R p₁ p₂ = 2 (p₂ -ᵥ p₁)
    theorem midpoint_vsub {R : Type u_1} {V : Type u_2} {P : Type u_4} [Ring R] [Invertible 2] [AddCommGroup V] [Module R V] [AddTorsor V P] (p₁ p₂ p : P) :
    midpoint R p₁ p₂ -ᵥ p = 2 (p₁ -ᵥ p) + 2 (p₂ -ᵥ p)
    theorem vsub_midpoint {R : Type u_1} {V : Type u_2} {P : Type u_4} [Ring R] [Invertible 2] [AddCommGroup V] [Module R V] [AddTorsor V P] (p₁ p₂ p : P) :
    p -ᵥ midpoint R p₁ p₂ = 2 (p -ᵥ p₁) + 2 (p -ᵥ p₂)
    @[simp]
    theorem midpoint_sub_left {R : Type u_1} {V : Type u_2} [Ring R] [Invertible 2] [AddCommGroup V] [Module R V] (v₁ v₂ : V) :
    midpoint R v₁ v₂ - v₁ = 2 (v₂ - v₁)
    @[simp]
    theorem midpoint_sub_right {R : Type u_1} {V : Type u_2} [Ring R] [Invertible 2] [AddCommGroup V] [Module R V] (v₁ v₂ : V) :
    midpoint R v₁ v₂ - v₂ = 2 (v₁ - v₂)
    @[simp]
    theorem left_sub_midpoint {R : Type u_1} {V : Type u_2} [Ring R] [Invertible 2] [AddCommGroup V] [Module R V] (v₁ v₂ : V) :
    v₁ - midpoint R v₁ v₂ = 2 (v₁ - v₂)
    @[simp]
    theorem right_sub_midpoint {R : Type u_1} {V : Type u_2} [Ring R] [Invertible 2] [AddCommGroup V] [Module R V] (v₁ v₂ : V) :
    v₂ - midpoint R v₁ v₂ = 2 (v₂ - v₁)
    @[simp]
    theorem midpoint_eq_left_iff (R : Type u_1) {V : Type u_2} {P : Type u_4} [Ring R] [Invertible 2] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y : P} :
    midpoint R x y = x x = y
    @[simp]
    theorem left_eq_midpoint_iff (R : Type u_1) {V : Type u_2} {P : Type u_4} [Ring R] [Invertible 2] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y : P} :
    x = midpoint R x y x = y
    @[simp]
    theorem midpoint_eq_right_iff (R : Type u_1) {V : Type u_2} {P : Type u_4} [Ring R] [Invertible 2] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y : P} :
    midpoint R x y = y x = y
    @[simp]
    theorem right_eq_midpoint_iff (R : Type u_1) {V : Type u_2} {P : Type u_4} [Ring R] [Invertible 2] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y : P} :
    y = midpoint R x y x = y
    theorem midpoint_eq_midpoint_iff_vsub_eq_vsub (R : Type u_1) {V : Type u_2} {P : Type u_4} [Ring R] [Invertible 2] [AddCommGroup V] [Module R V] [AddTorsor V P] {x x' y y' : P} :
    midpoint R x y = midpoint R x' y' x -ᵥ x' = y' -ᵥ y
    theorem midpoint_eq_iff' (R : Type u_1) {V : Type u_2} {P : Type u_4} [Ring R] [Invertible 2] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} :
    theorem midpoint_unique (R : Type u_1) {V : Type u_2} {P : Type u_4} [Ring R] [Invertible 2] [AddCommGroup V] [Module R V] [AddTorsor V P] (R' : Type u_6) [Ring R'] [Invertible 2] [Module R' V] (x y : P) :
    midpoint R x y = midpoint R' x y

    midpoint does not depend on the ring R.

    @[simp]
    theorem midpoint_self (R : Type u_1) {V : Type u_2} {P : Type u_4} [Ring R] [Invertible 2] [AddCommGroup V] [Module R V] [AddTorsor V P] (x : P) :
    midpoint R x x = x
    @[simp]
    theorem midpoint_add_self (R : Type u_1) {V : Type u_2} [Ring R] [Invertible 2] [AddCommGroup V] [Module R V] (x y : V) :
    midpoint R x y + midpoint R x y = x + y
    theorem midpoint_zero_add (R : Type u_1) {V : Type u_2} [Ring R] [Invertible 2] [AddCommGroup V] [Module R V] (x y : V) :
    midpoint R 0 (x + y) = midpoint R x y
    theorem midpoint_eq_smul_add (R : Type u_1) {V : Type u_2} [Ring R] [Invertible 2] [AddCommGroup V] [Module R V] (x y : V) :
    midpoint R x y = 2 (x + y)
    @[simp]
    theorem midpoint_self_neg (R : Type u_1) {V : Type u_2} [Ring R] [Invertible 2] [AddCommGroup V] [Module R V] (x : V) :
    midpoint R x (-x) = 0
    @[simp]
    theorem midpoint_neg_self (R : Type u_1) {V : Type u_2} [Ring R] [Invertible 2] [AddCommGroup V] [Module R V] (x : V) :
    midpoint R (-x) x = 0
    @[simp]
    theorem midpoint_sub_add (R : Type u_1) {V : Type u_2} [Ring R] [Invertible 2] [AddCommGroup V] [Module R V] (x y : V) :
    midpoint R (x - y) (x + y) = x
    @[simp]
    theorem midpoint_add_sub (R : Type u_1) {V : Type u_2} [Ring R] [Invertible 2] [AddCommGroup V] [Module R V] (x y : V) :
    midpoint R (x + y) (x - y) = x
    def AddMonoidHom.ofMapMidpoint (R : Type u_1) (R' : Type u_2) {E : Type u_3} {F : Type u_4} [Ring R] [Invertible 2] [AddCommGroup E] [Module R E] [Ring R'] [Invertible 2] [AddCommGroup F] [Module R' F] (f : EF) (h0 : f 0 = 0) (hm : ∀ (x y : E), f (midpoint R x y) = midpoint R' (f x) (f y)) :
    E →+ F

    A map f : E → F sending zero to zero and midpoints to midpoints is an AddMonoidHom.

    Equations
    Instances For
      @[simp]
      theorem AddMonoidHom.coe_ofMapMidpoint (R : Type u_1) (R' : Type u_2) {E : Type u_3} {F : Type u_4} [Ring R] [Invertible 2] [AddCommGroup E] [Module R E] [Ring R'] [Invertible 2] [AddCommGroup F] [Module R' F] (f : EF) (h0 : f 0 = 0) (hm : ∀ (x y : E), f (midpoint R x y) = midpoint R' (f x) (f y)) :
      (AddMonoidHom.ofMapMidpoint R R' f h0 hm) = f