Documentation

Mathlib.LinearAlgebra.AffineSpace.Simplex.Centroid

Centroid of a simplex in affine space #

This file proves some basic properties of the centroid of a simplex in affine space.

@[simp]
theorem Affine.Simplex.face_centroid_eq_centroid {k : Type u_1} {V : Type u_2} {P : Type u_3} [DivisionRing k] [AddCommGroup V] [Module k V] [AddTorsor V P] {n : } (s : Simplex k P n) {fs : Finset (Fin (n + 1))} {m : } (h : fs.card = m + 1) :

The centroid of a face of a simplex as the centroid of a subset of the points.

@[simp]
theorem Affine.Simplex.centroid_eq_iff {k : Type u_1} {V : Type u_2} {P : Type u_3} [DivisionRing k] [AddCommGroup V] [Module k V] [AddTorsor V P] [CharZero k] {n : } (s : Simplex k P n) {fs₁ fs₂ : Finset (Fin (n + 1))} {m₁ m₂ : } (h₁ : fs₁.card = m₁ + 1) (h₂ : fs₂.card = m₂ + 1) :
Finset.centroid k fs₁ s.points = Finset.centroid k fs₂ s.points fs₁ = fs₂

Over a characteristic-zero division ring, the centroids given by two subsets of the points of a simplex are equal if and only if those faces are given by the same subset of points.

theorem Affine.Simplex.face_centroid_eq_iff {k : Type u_1} {V : Type u_2} {P : Type u_3} [DivisionRing k] [AddCommGroup V] [Module k V] [AddTorsor V P] [CharZero k] {n : } (s : Simplex k P n) {fs₁ fs₂ : Finset (Fin (n + 1))} {m₁ m₂ : } (h₁ : fs₁.card = m₁ + 1) (h₂ : fs₂.card = m₂ + 1) :

Over a characteristic-zero division ring, the centroids of two faces of a simplex are equal if and only if those faces are given by the same subset of points.

theorem Affine.Simplex.centroid_eq_of_range_eq {k : Type u_1} {V : Type u_2} {P : Type u_3} [DivisionRing k] [AddCommGroup V] [Module k V] [AddTorsor V P] {n : } {s₁ s₂ : Simplex k P n} (h : Set.range s₁.points = Set.range s₂.points) :

Two simplices with the same points have the same centroid.