Documentation

Mathlib.LinearAlgebra.CliffordAlgebra.CategoryTheory

Category-theoretic interpretations of CliffordAlgebra #

Main definitions #

The "clifford algebra" functor, sending a quadratic R-module V to the clifford algebra on V.

This is CliffordAlgebra.map through the lens of category theory.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem QuadraticModuleCat.cliffordAlgebra_obj_carrier {R : Type u} [CommRing R] (M : QuadraticModuleCat R) :
    (QuadraticModuleCat.cliffordAlgebra.obj M) = CliffordAlgebra M.form
    @[simp]
    theorem QuadraticModuleCat.cliffordAlgebra_map_hom {R : Type u} [CommRing R] {_M _N : QuadraticModuleCat R} (f : _M _N) :
    (QuadraticModuleCat.cliffordAlgebra.map f).hom = CliffordAlgebra.map f.toIsometry