Documentation

Mathlib.LinearAlgebra.Coevaluation

The coevaluation map on finite dimensional vector spaces #

Given a finite dimensional vector space V over a field K this describes the canonical linear map from K to V ⊗ Dual K V which corresponds to the identity function on V.

Tags #

coevaluation, dual module, tensor product

Future work #

def coevaluation (K : Type u) [Field K] (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] :

The coevaluation map is a linear map from a field K to a finite dimensional vector space V.

Equations
Instances For
    theorem coevaluation_apply_one (K : Type u) [Field K] (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] :
    (coevaluation K V) 1 = let bV := Basis.ofVectorSpace K V; i : (Basis.ofVectorSpaceIndex K V), bV i ⊗ₜ[K] bV.coord i

    This lemma corresponds to one of the coherence laws for duals in rigid categories, see CategoryTheory.Monoidal.Rigid.

    This lemma corresponds to one of the coherence laws for duals in rigid categories, see CategoryTheory.Monoidal.Rigid.