Documentation

Mathlib.LinearAlgebra.Dimension.LinearMap

The rank of a linear map #

Main Definition #

@[inline, reducible]
abbrev LinearMap.rank {K : Type u} {V : Type v} {V' : Type v'} [Ring K] [AddCommGroup V] [Module K V] [AddCommGroup V'] [Module K V'] (f : V →ₗ[K] V') :

rank f is the rank of a LinearMap f, defined as the dimension of f.range.

Equations
Instances For
    theorem LinearMap.rank_le_range {K : Type u} {V : Type v} {V' : Type v'} [Ring K] [AddCommGroup V] [Module K V] [AddCommGroup V'] [Module K V'] (f : V →ₗ[K] V') :
    theorem LinearMap.rank_le_domain {K : Type u} {V : Type v} {V₁ : Type v} [Ring K] [AddCommGroup V] [Module K V] [AddCommGroup V₁] [Module K V₁] (f : V →ₗ[K] V₁) :
    @[simp]
    theorem LinearMap.rank_zero {K : Type u} {V : Type v} {V' : Type v'} [Ring K] [AddCommGroup V] [Module K V] [AddCommGroup V'] [Module K V'] [Nontrivial K] :
    theorem LinearMap.rank_comp_le_left {K : Type u} {V : Type v} {V' : Type v'} {V'' : Type v''} [Ring K] [AddCommGroup V] [Module K V] [AddCommGroup V'] [Module K V'] [AddCommGroup V''] [Module K V''] (g : V →ₗ[K] V') (f : V' →ₗ[K] V'') :
    theorem LinearMap.lift_rank_comp_le_right {K : Type u} {V : Type v} {V' : Type v'} {V'' : Type v''} [Ring K] [AddCommGroup V] [Module K V] [AddCommGroup V'] [Module K V'] [AddCommGroup V''] [Module K V''] (g : V →ₗ[K] V') (f : V' →ₗ[K] V'') :
    theorem LinearMap.lift_rank_comp_le {K : Type u} {V : Type v} {V' : Type v'} {V'' : Type v''} [Ring K] [AddCommGroup V] [Module K V] [AddCommGroup V'] [Module K V'] [AddCommGroup V''] [Module K V''] (g : V →ₗ[K] V') (f : V' →ₗ[K] V'') :

    The rank of the composition of two maps is less than the minimum of their ranks.

    theorem LinearMap.rank_comp_le_right {K : Type u} {V : Type v} {V' : Type v'} {V'₁ : Type v'} [Ring K] [AddCommGroup V] [Module K V] [AddCommGroup V'] [Module K V'] [AddCommGroup V'₁] [Module K V'₁] (g : V →ₗ[K] V') (f : V' →ₗ[K] V'₁) :
    theorem LinearMap.rank_comp_le {K : Type u} {V : Type v} {V' : Type v'} {V'₁ : Type v'} [Ring K] [AddCommGroup V] [Module K V] [AddCommGroup V'] [Module K V'] [AddCommGroup V'₁] [Module K V'₁] (g : V →ₗ[K] V') (f : V' →ₗ[K] V'₁) :

    The rank of the composition of two maps is less than the minimum of their ranks.

    See lift_rank_comp_le for the universe-polymorphic version.

    theorem LinearMap.rank_add_le {K : Type u} {V : Type v} {V' : Type v'} [DivisionRing K] [AddCommGroup V] [Module K V] [AddCommGroup V'] [Module K V'] (f : V →ₗ[K] V') (g : V →ₗ[K] V') :
    theorem LinearMap.rank_finset_sum_le {K : Type u} {V : Type v} {V' : Type v'} [DivisionRing K] [AddCommGroup V] [Module K V] [AddCommGroup V'] [Module K V'] {η : Type u_1} (s : Finset η) (f : ηV →ₗ[K] V') :
    LinearMap.rank (Finset.sum s fun (d : η) => f d) Finset.sum s fun (d : η) => LinearMap.rank (f d)
    theorem LinearMap.le_rank_iff_exists_linearIndependent_finset {K : Type u} {V : Type v} {V' : Type v'} [DivisionRing K] [AddCommGroup V] [Module K V] [AddCommGroup V'] [Module K V'] {n : } {f : V →ₗ[K] V'} :
    n LinearMap.rank f ∃ (s : Finset V), s.card = n LinearIndependent K fun (x : s) => f x