theorem
Module.End.eigenspace_aeval_polynomial_degree_1
{K : Type v}
{V : Type w}
[Field K]
[AddCommGroup V]
[Module K V]
(f : Module.End K V)
(q : Polynomial K)
(hq : q.degree = 1)
:
f.eigenspace (-q.coeff 0 / q.leadingCoeff) = LinearMap.ker ((Polynomial.aeval f) q)
theorem
Module.End.ker_aeval_ring_hom'_unit_polynomial
{K : Type v}
{V : Type w}
[Field K]
[AddCommGroup V]
[Module K V]
(f : Module.End K V)
(c : (Polynomial K)ˣ)
:
LinearMap.ker ((Polynomial.aeval f) ↑c) = ⊥
theorem
Module.End.aeval_apply_of_hasEigenvector
{K : Type v}
{V : Type w}
[Field K]
[AddCommGroup V]
[Module K V]
{f : Module.End K V}
{p : Polynomial K}
{μ : K}
{x : V}
(h : f.HasEigenvector μ x)
:
((Polynomial.aeval f) p) x = Polynomial.eval μ p • x
theorem
Module.End.isRoot_of_hasEigenvalue
{K : Type v}
{V : Type w}
[Field K]
[AddCommGroup V]
[Module K V]
{f : Module.End K V}
{μ : K}
(h : f.HasEigenvalue μ)
:
(minpoly K f).IsRoot μ
theorem
Module.End.hasEigenvalue_of_isRoot
{K : Type v}
{V : Type w}
[Field K]
[AddCommGroup V]
[Module K V]
[FiniteDimensional K V]
{f : Module.End K V}
{μ : K}
(h : (minpoly K f).IsRoot μ)
:
f.HasEigenvalue μ
theorem
Module.End.hasEigenvalue_iff_isRoot
{K : Type v}
{V : Type w}
[Field K]
[AddCommGroup V]
[Module K V]
[FiniteDimensional K V]
{f : Module.End K V}
{μ : K}
:
theorem
Module.End.finite_hasEigenvalue
{K : Type v}
{V : Type w}
[Field K]
[AddCommGroup V]
[Module K V]
[FiniteDimensional K V]
(f : Module.End K V)
:
Set.Finite f.HasEigenvalue
noncomputable instance
Module.End.instFintypeEigenvalues
{K : Type v}
{V : Type w}
[Field K]
[AddCommGroup V]
[Module K V]
[FiniteDimensional K V]
(f : Module.End K V)
:
Fintype f.Eigenvalues
An endomorphism of a finite-dimensional vector space has finitely many eigenvalues.
Equations
- f.instFintypeEigenvalues = ⋯.fintype
theorem
Module.End.finite_spectrum
{K : Type v}
{V : Type w}
[Field K]
[AddCommGroup V]
[Module K V]
[FiniteDimensional K V]
(f : Module.End K V)
:
(spectrum K f).Finite
An endomorphism of a finite-dimensional vector space has a finite spectrum.
theorem
Matrix.finite_spectrum
{n : Type u_1}
{R : Type u_2}
[Field R]
[Fintype n]
[DecidableEq n]
(A : Matrix n n R)
:
(spectrum R A).Finite
An n x n matrix over a field has a finite spectrum.
instance
Matrix.instFiniteSpectrum
{n : Type u_1}
{R : Type u_2}
[Field R]
[Fintype n]
[DecidableEq n]
(A : Matrix n n R)
: