Documentation

Mathlib.LinearAlgebra.Finsupp.Span

Finitely supported functions and spans #

Tags #

function with finite support, module, linear algebra

@[simp]
theorem Finsupp.ker_lsingle {α : Type u_1} {M : Type u_2} {R : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] (a : α) :
theorem Finsupp.lsingle_range_le_ker_lapply {α : Type u_1} {M : Type u_2} {R : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] (s t : Set α) (h : Disjoint s t) :
as, LinearMap.range (lsingle a) at, LinearMap.ker (lapply a)
theorem Finsupp.iInf_ker_lapply_le_bot {α : Type u_1} {M : Type u_2} {R : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] :
⨅ (a : α), LinearMap.ker (lapply a)
theorem Finsupp.iSup_lsingle_range {α : Type u_1} {M : Type u_2} {R : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] :
⨆ (a : α), LinearMap.range (lsingle a) =
theorem Finsupp.disjoint_lsingle_lsingle {α : Type u_1} {M : Type u_2} {R : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] (s t : Set α) (hs : Disjoint s t) :
Disjoint (⨆ as, LinearMap.range (lsingle a)) (⨆ at, LinearMap.range (lsingle a))
theorem Finsupp.span_single_image {α : Type u_1} {M : Type u_2} {R : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] (s : Set M) (a : α) :
theorem Submodule.exists_finset_of_mem_iSup {R : Type u_1} {M : Type u_2} [Semiring R] [AddCommMonoid M] [Module R M] {ι : Type u_4} (p : ιSubmodule R M) {m : M} (hm : m ⨆ (i : ι), p i) :
∃ (s : Finset ι), m is, p i
theorem Submodule.mem_iSup_iff_exists_finset {R : Type u_1} {M : Type u_2} [Semiring R] [AddCommMonoid M] [Module R M] {ι : Type u_4} {p : ιSubmodule R M} {m : M} :
m ⨆ (i : ι), p i ∃ (s : Finset ι), m is, p i

Submodule.exists_finset_of_mem_iSup as an iff

theorem Submodule.mem_sSup_iff_exists_finset {R : Type u_1} {M : Type u_2} [Semiring R] [AddCommMonoid M] [Module R M] {S : Set (Submodule R M)} {m : M} :
m sSup S ∃ (s : Finset (Submodule R M)), s S m is, i