@[simp]
theorem
Finsupp.ker_lsingle
{α : Type u_1}
{M : Type u_2}
{R : Type u_5}
[Semiring R]
[AddCommMonoid M]
[Module R M]
(a : α)
:
LinearMap.ker (lsingle a) = ⊥
theorem
Finsupp.lsingle_range_le_ker_lapply
{α : Type u_1}
{M : Type u_2}
{R : Type u_5}
[Semiring R]
[AddCommMonoid M]
[Module R M]
(s t : Set α)
(h : Disjoint s t)
:
⨆ a ∈ s, LinearMap.range (lsingle a) ≤ ⨅ a ∈ t, LinearMap.ker (lapply a)
theorem
Finsupp.iInf_ker_lapply_le_bot
{α : Type u_1}
{M : Type u_2}
{R : Type u_5}
[Semiring R]
[AddCommMonoid M]
[Module R M]
:
⨅ (a : α), LinearMap.ker (lapply a) ≤ ⊥
theorem
Finsupp.iSup_lsingle_range
{α : Type u_1}
{M : Type u_2}
{R : Type u_5}
[Semiring R]
[AddCommMonoid M]
[Module R M]
:
⨆ (a : α), LinearMap.range (lsingle a) = ⊤
theorem
Finsupp.disjoint_lsingle_lsingle
{α : Type u_1}
{M : Type u_2}
{R : Type u_5}
[Semiring R]
[AddCommMonoid M]
[Module R M]
(s t : Set α)
(hs : Disjoint s t)
:
Disjoint (⨆ a ∈ s, LinearMap.range (lsingle a)) (⨆ a ∈ t, LinearMap.range (lsingle a))
theorem
Finsupp.span_single_image
{α : Type u_1}
{M : Type u_2}
{R : Type u_5}
[Semiring R]
[AddCommMonoid M]
[Module R M]
(s : Set M)
(a : α)
:
Submodule.span R (single a '' s) = Submodule.map (lsingle a) (Submodule.span R s)
theorem
Submodule.mem_iSup_iff_exists_finset
{R : Type u_1}
{M : Type u_2}
[Semiring R]
[AddCommMonoid M]
[Module R M]
{ι : Type u_4}
{p : ι → Submodule R M}
{m : M}
:
Submodule.exists_finset_of_mem_iSup
as an iff