Miscellaneous results about determinant #
In this file, we collect various formulas about determinant of matrices.
theorem
Matrix.submatrix_succAbove_det_eq_negOnePow_submatrix_succAbove_det
{R : Type u_1}
[CommRing R]
{n : ℕ}
(M : Matrix (Fin (n + 1)) (Fin n) R)
(hv : ∑ j : Fin (n + 1), M j = 0)
(j₁ j₂ : Fin (n + 1))
:
Let M
be a (n+1) × n
matrix whose row sums to zero. Then all the matrices obtained by
deleting one row have the same determinant up to a sign.
theorem
Matrix.submatrix_succAbove_det_eq_negOnePow_submatrix_succAbove_det'
{R : Type u_1}
[CommRing R]
{n : ℕ}
(M : Matrix (Fin n) (Fin (n + 1)) R)
(hv : ∀ (i : Fin n), ∑ j : Fin (n + 1), M i j = 0)
(j₁ j₂ : Fin (n + 1))
:
Let M
be a (n+1) × n
matrix whose column sums to zero. Then all the matrices obtained by
deleting one column have the same determinant up to a sign.