Documentation

Mathlib.LinearAlgebra.Matrix.Dual

Dual space, linear maps and matrices. #

This file contains some results about matrices and dual spaces.

Tags #

matrix, linear_map, transpose, dual

@[simp]
theorem LinearMap.toMatrix_transpose {K : Type u_1} {V₁ : Type u_2} {V₂ : Type u_3} {ι₁ : Type u_4} {ι₂ : Type u_5} [Field K] [AddCommGroup V₁] [Module K V₁] [AddCommGroup V₂] [Module K V₂] [Fintype ι₁] [Fintype ι₂] [DecidableEq ι₁] [DecidableEq ι₂] {B₁ : Basis ι₁ K V₁} {B₂ : Basis ι₂ K V₂} (u : V₁ →ₗ[K] V₂) :
@[simp]
theorem Matrix.toLin_transpose {K : Type u_1} {V₁ : Type u_2} {V₂ : Type u_3} {ι₁ : Type u_4} {ι₂ : Type u_5} [Field K] [AddCommGroup V₁] [Module K V₁] [AddCommGroup V₂] [Module K V₂] [Fintype ι₁] [Fintype ι₂] [DecidableEq ι₁] [DecidableEq ι₂] {B₁ : Basis ι₁ K V₁} {B₂ : Basis ι₂ K V₂} (M : Matrix ι₁ ι₂ K) :
def dotProductEquiv (R : Type u_1) (n : Type u_2) [CommSemiring R] [Fintype n] [DecidableEq n] :
(nR) ≃ₗ[R] Module.Dual R (nR)

The dot product as a linear equivalence to the dual.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem dotProductEquiv_apply_apply (R : Type u_1) (n : Type u_2) [CommSemiring R] [Fintype n] [DecidableEq n] (v w : nR) :
    ((dotProductEquiv R n) v) w = v ⬝ᵥ w
    @[simp]
    theorem dotProductEquiv_symm_apply (R : Type u_1) (n : Type u_2) [CommSemiring R] [Fintype n] [DecidableEq n] (f : Module.Dual R (nR)) (i : n) :
    (dotProductEquiv R n).symm f i = f ((LinearMap.single R (fun (a : n) => R) i) 1)