Standard basis on matrices #
Main results #
Basis.matrix
: extend a basis onM
to the standard basis onMatrix n m M
noncomputable def
Basis.matrix
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
(m : Type u_4)
(n : Type u_5)
[Fintype m]
[Fintype n]
[Semiring R]
[AddCommMonoid M]
[Module R M]
(b : Basis ι R M)
:
The standard basis of Matrix m n M
given a basis on M
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
Basis.matrix_apply
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{m : Type u_4}
{n : Type u_5}
[Fintype m]
[Fintype n]
[Semiring R]
[AddCommMonoid M]
[Module R M]
(b : Basis ι R M)
(i : m)
(j : n)
(k : ι)
[DecidableEq m]
[DecidableEq n]
:
(Basis.matrix m n b) (i, j, k) = Matrix.stdBasisMatrix i j (b k)
noncomputable def
Matrix.stdBasis
(R : Type u_1)
(m : Type u_2)
(n : Type u_3)
[Fintype m]
[Finite n]
[Semiring R]
:
The standard basis of Matrix m n R
.
Equations
- Matrix.stdBasis R m n = ((Pi.basis fun (x : m) => Pi.basisFun R n).reindex (Equiv.sigmaEquivProd m n)).map (Matrix.ofLinearEquiv R)
Instances For
theorem
Matrix.stdBasis_eq_stdBasisMatrix
(R : Type u_1)
{m : Type u_2}
{n : Type u_3}
[Fintype m]
[Finite n]
[Semiring R]
(i : m)
(j : n)
[DecidableEq m]
[DecidableEq n]
:
(stdBasis R m n) (i, j) = stdBasisMatrix i j 1