Multilinear maps from direct sums #
This file describes multilinear maps on direct sums.
Main results #
MultilinearMap.fromDirectSumEquiv: Ifιis aFintype,κ iis a family of types indexed byιand we are given anR-moduleM i jfor everyi : ιandj : κ i, this is the linear equivalence betweenΠ p : (i : ι) → κ i, MultilinearMap R (fun i ↦ M i (p i)) M'andMultilinearMap R (fun i ↦ ⨁ j : κ i, M i j) M'.
theorem
MultilinearMap.directSum_ext
{R : Type u_1}
{ι : Type u_2}
{M' : Type u_3}
{κ : ι → Type u_4}
{M : (i : ι) → κ i → Type u_5}
[CommSemiring R]
[(i : ι) → (j : κ i) → AddCommMonoid (M i j)]
[(i : ι) → (j : κ i) → Module R (M i j)]
[AddCommMonoid M']
[Module R M']
[Finite ι]
[(i : ι) → DecidableEq (κ i)]
⦃f g : MultilinearMap R (fun (i : ι) => DirectSum (κ i) fun (j : κ i) => M i j) M'⦄
(h :
∀ (p : (i : ι) → κ i),
(f.compLinearMap fun (i : ι) => DirectSum.lof R (κ i) (M i) (p i)) = g.compLinearMap fun (i : ι) => DirectSum.lof R (κ i) (M i) (p i))
:
Two multilinear maps from direct sums are equal if they agree on the generators.
theorem
MultilinearMap.directSum_ext_iff
{R : Type u_1}
{ι : Type u_2}
{M' : Type u_3}
{κ : ι → Type u_4}
{M : (i : ι) → κ i → Type u_5}
[CommSemiring R]
[(i : ι) → (j : κ i) → AddCommMonoid (M i j)]
[(i : ι) → (j : κ i) → Module R (M i j)]
[AddCommMonoid M']
[Module R M']
[Finite ι]
[(i : ι) → DecidableEq (κ i)]
{f g : MultilinearMap R (fun (i : ι) => DirectSum (κ i) fun (j : κ i) => M i j) M'}
:
f = g ↔ ∀ (p : (i : ι) → κ i),
(f.compLinearMap fun (i : ι) => DirectSum.lof R (κ i) (M i) (p i)) = g.compLinearMap fun (i : ι) => DirectSum.lof R (κ i) (M i) (p i)
noncomputable def
MultilinearMap.fromDirectSumEquiv
{R : Type u_1}
{ι : Type u_2}
{M' : Type u_3}
{κ : ι → Type u_4}
{M : (i : ι) → κ i → Type u_5}
[CommSemiring R]
[(i : ι) → (j : κ i) → AddCommMonoid (M i j)]
[(i : ι) → (j : κ i) → Module R (M i j)]
[AddCommMonoid M']
[Module R M']
[DecidableEq ι]
[Finite ι]
:
((p : (i : ι) → κ i) → MultilinearMap R (fun (i : ι) => M i (p i)) M') ≃ₗ[R] MultilinearMap R (fun (i : ι) => DirectSum (κ i) fun (j : κ i) => M i j) M'
The linear equivalence between families indexed by p : Π i : ι, κ i of multilinear maps
on the fun i ↦ M i (p i) and the space of multilinear map on fun i ↦ ⨁ j : κ i, M i j.
Instances For
@[simp]
theorem
MultilinearMap.fromDirectSumEquiv_lof
{R : Type u_1}
{ι : Type u_2}
{M' : Type u_3}
{κ : ι → Type u_4}
{M : (i : ι) → κ i → Type u_5}
[CommSemiring R]
[(i : ι) → (j : κ i) → AddCommMonoid (M i j)]
[(i : ι) → (j : κ i) → Module R (M i j)]
[AddCommMonoid M']
[Module R M']
[DecidableEq ι]
[Finite ι]
[(i : ι) → DecidableEq (κ i)]
(f : (p : (i : ι) → κ i) → MultilinearMap R (fun (i : ι) => M i (p i)) M')
(p : (i : ι) → κ i)
(x : (i : ι) → M i (p i))
:
theorem
MultilinearMap.fromDirectSumEquiv_apply
{R : Type u_1}
{ι : Type u_2}
{M' : Type u_3}
{κ : ι → Type u_4}
{M : (i : ι) → κ i → Type u_5}
[CommSemiring R]
[(i : ι) → (j : κ i) → AddCommMonoid (M i j)]
[(i : ι) → (j : κ i) → Module R (M i j)]
[AddCommMonoid M']
[Module R M']
[DecidableEq ι]
[Fintype ι]
[(i : ι) → DecidableEq (κ i)]
[(i : ι) → (j : κ i) → (x : M i j) → Decidable (x ≠ 0)]
(f : (p : (i : ι) → κ i) → MultilinearMap R (fun (i : ι) => M i (p i)) M')
(x : DirectSum ι fun (i : ι) => DirectSum (κ i) fun (j : κ i) => M i j)
:
(fromDirectSumEquiv f) ⇑x = ∑ p ∈ Fintype.piFinset fun (i : ι) => DFinsupp.support (x i), (f p) fun (i : ι) => (x i) (p i)
Prefer using fromDirectSumEquiv_lof where possible.
@[simp]
theorem
MultilinearMap.fromDirectSumEquiv_symm_apply
{R : Type u_1}
{ι : Type u_2}
{M' : Type u_3}
{κ : ι → Type u_4}
{M : (i : ι) → κ i → Type u_5}
[CommSemiring R]
[(i : ι) → (j : κ i) → AddCommMonoid (M i j)]
[(i : ι) → (j : κ i) → Module R (M i j)]
[AddCommMonoid M']
[Module R M']
[DecidableEq ι]
[Finite ι]
[(i : ι) → DecidableEq (κ i)]
(f : MultilinearMap R (fun (i : ι) => DirectSum (κ i) fun (j : κ i) => M i j) M')
(p : (i : ι) → κ i)
: