Tensor products of finitely supported functions #
This file shows that taking PiTensorProducts commutes with taking DFinsupps in all arguments.
Main results #
ofDFinsuppEquiv: the linear equivalence between aPiTensorProductofDFinsupps and theDFinsuppof thePiTensorProducts.
def
PiTensorProduct.ofDFinsuppEquiv
{R : Type u_1}
{ι : Type u_2}
{κ : ι → Type u_3}
{M : (i : ι) → κ i → Type u_4}
[CommSemiring R]
[(i : ι) → (j : κ i) → AddCommMonoid (M i j)]
[(i : ι) → (j : κ i) → Module R (M i j)]
[Fintype ι]
[DecidableEq ι]
[(i : ι) → DecidableEq (κ i)]
:
(PiTensorProduct R fun (i : ι) => Π₀ (j : κ i), M i j) ≃ₗ[R] Π₀ (p : (i : ι) → κ i), PiTensorProduct R fun (i : ι) => M i (p i)
The ι-ary tensor product distributes over κ i-ary finitely supported functions.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
PiTensorProduct.ofDFinsuppEquiv_tprod_single
{R : Type u_1}
{ι : Type u_2}
{κ : ι → Type u_3}
{M : (i : ι) → κ i → Type u_4}
[CommSemiring R]
[(i : ι) → (j : κ i) → AddCommMonoid (M i j)]
[(i : ι) → (j : κ i) → Module R (M i j)]
[Fintype ι]
[DecidableEq ι]
[(i : ι) → DecidableEq (κ i)]
(p : (i : ι) → κ i)
(x : (i : ι) → M i (p i))
:
ofDFinsuppEquiv ((tprod R) fun (i : ι) => DFinsupp.single (p i) (x i)) = DFinsupp.single p ((tprod R) fun (i : ι) => x i)
@[simp]
theorem
PiTensorProduct.ofDFinsuppEquiv_symm_single_tprod
{R : Type u_1}
{ι : Type u_2}
{κ : ι → Type u_3}
{M : (i : ι) → κ i → Type u_4}
[CommSemiring R]
[(i : ι) → (j : κ i) → AddCommMonoid (M i j)]
[(i : ι) → (j : κ i) → Module R (M i j)]
[Fintype ι]
[DecidableEq ι]
[(i : ι) → DecidableEq (κ i)]
(p : (i : ι) → κ i)
(x : (i : ι) → M i (p i))
:
ofDFinsuppEquiv.symm (DFinsupp.single p ((tprod R) x)) = (tprod R) fun (i : ι) => DFinsupp.single (p i) (x i)
@[simp]
theorem
PiTensorProduct.ofDFinsuppEquiv_tprod_apply
{R : Type u_1}
{ι : Type u_2}
{κ : ι → Type u_3}
{M : (i : ι) → κ i → Type u_4}
[CommSemiring R]
[(i : ι) → (j : κ i) → AddCommMonoid (M i j)]
[(i : ι) → (j : κ i) → Module R (M i j)]
[Fintype ι]
[DecidableEq ι]
[(i : ι) → DecidableEq (κ i)]
(x : (i : ι) → Π₀ (j : κ i), M i j)
(p : (i : ι) → κ i)
: