Group actions on projectivization #
Show that (among other groups), the general linear group of V
acts on ℙ K V
.
instance
Projectivization.instMulAction
{G : Type u_1}
{K : Type u_2}
{V : Type u_3}
[AddCommGroup V]
[DivisionRing K]
[Module K V]
[Group G]
[DistribMulAction G V]
[SMulCommClass G K V]
:
MulAction G (Projectivization K V)
Any group acting K
-linearly on V
(such as the general linear group) acts on ℙ V
.
Equations
- Projectivization.instMulAction = { smul := fun (g : G) (x : Projectivization K V) => Projectivization.map ((DistribMulAction.toModuleEnd K V) g) ⋯ x, one_smul := ⋯, mul_smul := ⋯ }
theorem
Projectivization.smul_def
{G : Type u_1}
{K : Type u_2}
{V : Type u_3}
[AddCommGroup V]
[DivisionRing K]
[Module K V]
[Group G]
[DistribMulAction G V]
[SMulCommClass G K V]
(g : G)
(x : Projectivization K V)
:
theorem
Projectivization.generalLinearGroup_smul_def
{K : Type u_2}
{V : Type u_3}
[AddCommGroup V]
[DivisionRing K]
[Module K V]
(g : LinearMap.GeneralLinearGroup K V)
(x : Projectivization K V)
:
@[simp]
theorem
Projectivization.smul_mk
{G : Type u_1}
{K : Type u_2}
{V : Type u_3}
[AddCommGroup V]
[DivisionRing K]
[Module K V]
[Group G]
[DistribMulAction G V]
[SMulCommClass G K V]
(g : G)
{v : V}
(hv : v ≠ 0)
: