Documentation

Mathlib.LinearAlgebra.Projectivization.Action

Group actions on projectivization #

Show that (among other groups), the general linear group of V acts on ℙ K V.

instance Projectivization.instMulAction {G : Type u_1} {K : Type u_2} {V : Type u_3} [AddCommGroup V] [DivisionRing K] [Module K V] [Group G] [DistribMulAction G V] [SMulCommClass G K V] :

Any group acting K-linearly on V (such as the general linear group) acts on ℙ V.

Equations
theorem Projectivization.smul_def {G : Type u_1} {K : Type u_2} {V : Type u_3} [AddCommGroup V] [DivisionRing K] [Module K V] [Group G] [DistribMulAction G V] [SMulCommClass G K V] (g : G) (x : Projectivization K V) :
@[simp]
theorem Projectivization.smul_mk {G : Type u_1} {K : Type u_2} {V : Type u_3} [AddCommGroup V] [DivisionRing K] [Module K V] [Group G] [DistribMulAction G V] [SMulCommClass G K V] (g : G) {v : V} (hv : v 0) :
g mk K v hv = mk K (g v)