The pairing between the tensor power of the dual and the tensor power #
We construct the pairing
TensorPower.pairingDual : ⨂[R]^n (Module.Dual R M) →ₗ[R] (Module.Dual R (⨂[R]^n M))
.
noncomputable def
TensorPower.multilinearMapToDual
(R : Type u_1)
(M : Type u_2)
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
(n : ℕ)
:
MultilinearMap R (fun (x : Fin n) => Module.Dual R M) (Module.Dual R (TensorPower R n M))
The canonical multilinear map from n
copies of the dual of the module M
to the dual of ⨂[R]^n M
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
TensorPower.multilinearMapToDual_apply_tprod
{R : Type u_1}
{M : Type u_2}
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
{n : ℕ}
(f : Fin n → Module.Dual R M)
(v : Fin n → M)
:
((multilinearMapToDual R M n) f) ((PiTensorProduct.tprod R) v) = ∏ i : Fin n, (f i) (v i)
noncomputable def
TensorPower.pairingDual
(R : Type u_1)
(M : Type u_2)
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
(n : ℕ)
:
TensorPower R n (Module.Dual R M) →ₗ[R] Module.Dual R (TensorPower R n M)
The linear map from the tensor power of the dual to the dual of the tensor power.
Equations
- TensorPower.pairingDual R M n = PiTensorProduct.lift (TensorPower.multilinearMapToDual R M n)
Instances For
@[simp]
theorem
TensorPower.pairingDual_tprod_tprod
{R : Type u_1}
{M : Type u_2}
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
{n : ℕ}
(f : Fin n → Module.Dual R M)
(v : Fin n → M)
:
((pairingDual R M n) ((PiTensorProduct.tprod R) f)) ((PiTensorProduct.tprod R) v) = ∏ i : Fin n, (f i) (v i)