Functor and bifunctors can be applied to Equiv
s. #
We define
def Functor.mapEquiv (f : Type u → Type v) [Functor f] [LawfulFunctor f] :
α ≃ β → f α ≃ f β
and
def Bifunctor.mapEquiv (F : Type u → Type v → Type w) [Bifunctor F] [LawfulBifunctor F] :
α ≃ β → α' ≃ β' → F α α' ≃ F β β'
def
Functor.mapEquiv
{α β : Type u}
(f : Type u → Type v)
[Functor f]
[LawfulFunctor f]
(h : α ≃ β)
:
f α ≃ f β
Apply a functor to an Equiv
.
Equations
- Functor.mapEquiv f h = { toFun := Functor.map ⇑h, invFun := Functor.map ⇑h.symm, left_inv := ⋯, right_inv := ⋯ }
Instances For
@[simp]
theorem
Functor.mapEquiv_refl
{α : Type u}
(f : Type u → Type v)
[Functor f]
[LawfulFunctor f]
:
mapEquiv f (Equiv.refl α) = Equiv.refl (f α)
def
Bifunctor.mapEquiv
{α β : Type u}
{α' β' : Type v}
(F : Type u → Type v → Type w)
[Bifunctor F]
[LawfulBifunctor F]
(h : α ≃ β)
(h' : α' ≃ β')
:
F α α' ≃ F β β'
Apply a bifunctor to a pair of Equiv
s.
Equations
- Bifunctor.mapEquiv F h h' = { toFun := bimap ⇑h ⇑h', invFun := bimap ⇑h.symm ⇑h'.symm, left_inv := ⋯, right_inv := ⋯ }
Instances For
@[simp]
theorem
Bifunctor.mapEquiv_refl_refl
{α : Type u}
{α' : Type v}
(F : Type u → Type v → Type w)
[Bifunctor F]
[LawfulBifunctor F]
:
mapEquiv F (Equiv.refl α) (Equiv.refl α') = Equiv.refl (F α α')