Documentation

Mathlib.Logic.IsEmpty.Defs

Types that are empty #

In this file we define a typeclass IsEmpty, which expresses that a type has no elements.

Main declaration #

class IsEmpty (α : Sort u) :

IsEmpty α expresses that α is empty.

  • false : ∀ (a : α), False
Instances
    theorem Function.isEmpty {α : Sort u} {β : Sort v} [IsEmpty β] (f : αβ) :
    theorem Function.Surjective.isEmpty {α : Sort u} {β : Sort v} [IsEmpty α] {f : αβ} (hf : Surjective f) :
    instance instIsEmptyForallOfNonempty {α : Sort u} {p : αSort v} [∀ (x : α), IsEmpty (p x)] [h : Nonempty α] :
    IsEmpty ((x : α) → p x)
    instance PProd.isEmpty_left {α : Sort u} {β : Sort v} [IsEmpty α] :
    IsEmpty (α ×' β)
    instance PProd.isEmpty_right {α : Sort u} {β : Sort v} [IsEmpty β] :
    IsEmpty (α ×' β)
    instance Prod.isEmpty_left {α : Type u_1} {β : Type u_2} [IsEmpty α] :
    IsEmpty (α × β)
    instance Prod.isEmpty_right {α : Type u_1} {β : Type u_2} [IsEmpty β] :
    IsEmpty (α × β)
    instance Quot.instIsEmpty {α : Sort u} [IsEmpty α] {r : ααProp} :
    instance Quotient.instIsEmpty {α : Sort u} [IsEmpty α] {s : Setoid α} :
    instance instIsEmptyPSum {α : Sort u} {β : Sort v} [IsEmpty α] [IsEmpty β] :
    IsEmpty (α ⊕' β)
    instance instIsEmptySum {α : Type u_1} {β : Type u_2} [IsEmpty α] [IsEmpty β] :
    IsEmpty (α β)
    instance instIsEmptySubtype {α : Sort u} [IsEmpty α] (p : αProp) :

    subtypes of an empty type are empty

    theorem Subtype.isEmpty_of_false {α : Sort u} {p : αProp} (hp : ∀ (a : α), ¬p a) :

    subtypes by an all-false predicate are false.

    instance Subtype.isEmpty_false {α : Sort u} :

    subtypes by false are false.

    instance Sigma.isEmpty_left {α : Type u_1} [IsEmpty α] {E : αType v} :
    def isEmptyElim {α : Sort u} [IsEmpty α] {p : αSort v} (a : α) :
    p a

    Eliminate out of a type that IsEmpty (without using projection notation).

    Equations
    Instances For
      theorem isEmpty_iff {α : Sort u} :
      IsEmpty α ∀ (a : α), False
      def IsEmpty.elim {α : Sort u} :
      IsEmpty α{p : αSort v} → (a : α) → p a

      Eliminate out of a type that IsEmpty (using projection notation).

      Equations
      Instances For
        def IsEmpty.elim' {α : Sort u} {β : Sort v} (h : IsEmpty α) (a : α) :
        β

        Non-dependent version of IsEmpty.elim. Helpful if the elaborator cannot elaborate h.elim a correctly.

        Equations
        Instances For
          @[simp]
          theorem IsEmpty.forall_iff {α : Sort u} [IsEmpty α] {p : αProp} :
          (∀ (a : α), p a) True
          @[simp]
          theorem IsEmpty.exists_iff {α : Sort u} [IsEmpty α] {p : αProp} :
          ( (a : α), p a) False
          @[instance 100]