@[simp]
theorem
equivShrink_symm_zero
{α : Type u_1}
[Zero α]
[Small.{u_2, u_1} α]
:
↑(equivShrink α).symm 0 = 0
@[simp]
theorem
equivShrink_symm_one
{α : Type u_1}
[One α]
[Small.{u_2, u_1} α]
:
↑(equivShrink α).symm 1 = 1
@[simp]
theorem
equivShrink_symm_add
{α : Type u_1}
[Add α]
[Small.{u_2, u_1} α]
(x : Shrink α)
(y : Shrink α)
:
↑(equivShrink α).symm (x + y) = ↑(equivShrink α).symm x + ↑(equivShrink α).symm y
@[simp]
theorem
equivShrink_add
{α : Type u_1}
[Add α]
[Small.{u_2, u_1} α]
(x : α)
(y : α)
:
↑(equivShrink α) (x + y) = ↑(equivShrink α) x + ↑(equivShrink α) y
@[simp]
theorem
equivShrink_symm_mul
{α : Type u_1}
[Mul α]
[Small.{u_2, u_1} α]
(x : Shrink α)
(y : Shrink α)
:
↑(equivShrink α).symm (x * y) = ↑(equivShrink α).symm x * ↑(equivShrink α).symm y
@[simp]
theorem
equivShrink_mul
{α : Type u_1}
[Mul α]
[Small.{u_2, u_1} α]
(x : α)
(y : α)
:
↑(equivShrink α) (x * y) = ↑(equivShrink α) x * ↑(equivShrink α) y
@[simp]
theorem
equivShrink_symm_sub
{α : Type u_1}
[Sub α]
[Small.{u_2, u_1} α]
(x : Shrink α)
(y : Shrink α)
:
↑(equivShrink α).symm (x - y) = ↑(equivShrink α).symm x - ↑(equivShrink α).symm y
@[simp]
theorem
equivShrink_sub
{α : Type u_1}
[Sub α]
[Small.{u_2, u_1} α]
(x : α)
(y : α)
:
↑(equivShrink α) (x - y) = ↑(equivShrink α) x - ↑(equivShrink α) y
@[simp]
theorem
equivShrink_symm_div
{α : Type u_1}
[Div α]
[Small.{u_2, u_1} α]
(x : Shrink α)
(y : Shrink α)
:
↑(equivShrink α).symm (x / y) = ↑(equivShrink α).symm x / ↑(equivShrink α).symm y
@[simp]
theorem
equivShrink_div
{α : Type u_1}
[Div α]
[Small.{u_2, u_1} α]
(x : α)
(y : α)
:
↑(equivShrink α) (x / y) = ↑(equivShrink α) x / ↑(equivShrink α) y
@[simp]
theorem
equivShrink_symm_neg
{α : Type u_1}
[Neg α]
[Small.{u_2, u_1} α]
(x : Shrink α)
:
↑(equivShrink α).symm (-x) = -↑(equivShrink α).symm x
@[simp]
theorem
equivShrink_neg
{α : Type u_1}
[Neg α]
[Small.{u_2, u_1} α]
(x : α)
:
↑(equivShrink α) (-x) = -↑(equivShrink α) x
@[simp]
theorem
equivShrink_symm_inv
{α : Type u_1}
[Inv α]
[Small.{u_2, u_1} α]
(x : Shrink α)
:
↑(equivShrink α).symm x⁻¹ = (↑(equivShrink α).symm x)⁻¹
@[simp]
theorem
equivShrink_inv
{α : Type u_1}
[Inv α]
[Small.{u_2, u_1} α]
(x : α)
:
↑(equivShrink α) x⁻¹ = (↑(equivShrink α) x)⁻¹
instance
instAddSemigroupShrink
{α : Type u_1}
[AddSemigroup α]
[Small.{u_2, u_1} α]
:
AddSemigroup (Shrink α)
instance
instCommSemigroupShrink
{α : Type u_1}
[CommSemigroup α]
[Small.{u_2, u_1} α]
:
CommSemigroup (Shrink α)
instance
instMulZeroClassShrink
{α : Type u_1}
[MulZeroClass α]
[Small.{u_2, u_1} α]
:
MulZeroClass (Shrink α)
instance
instAddZeroClassShrink
{α : Type u_1}
[AddZeroClass α]
[Small.{u_2, u_1} α]
:
AddZeroClass (Shrink α)
instance
instMulOneClassShrink
{α : Type u_1}
[MulOneClass α]
[Small.{u_2, u_1} α]
:
MulOneClass (Shrink α)
instance
instAddCommMonoidShrink
{α : Type u_1}
[AddCommMonoid α]
[Small.{u_2, u_1} α]
:
AddCommMonoid (Shrink α)
instance
instCommMonoidShrink
{α : Type u_1}
[CommMonoid α]
[Small.{u_2, u_1} α]
:
CommMonoid (Shrink α)
instance
instAddCommGroupShrink
{α : Type u_1}
[AddCommGroup α]
[Small.{u_2, u_1} α]
:
AddCommGroup (Shrink α)