Documentation

Mathlib.Logic.Small.Group

Transfer group structures from α to Shrink α. #

instance instZeroShrink {α : Type u_1} [Zero α] [Small.{u_2, u_1} α] :
instance instOneShrink {α : Type u_1} [One α] [Small.{u_2, u_1} α] :
One (Shrink α)
@[simp]
theorem equivShrink_symm_zero {α : Type u_1} [Zero α] [Small.{u_2, u_1} α] :
(equivShrink α).symm 0 = 0
@[simp]
theorem equivShrink_symm_one {α : Type u_1} [One α] [Small.{u_2, u_1} α] :
(equivShrink α).symm 1 = 1
instance instAddShrink {α : Type u_1} [Add α] [Small.{u_2, u_1} α] :
Add (Shrink α)
instance instMulShrink {α : Type u_1} [Mul α] [Small.{u_2, u_1} α] :
Mul (Shrink α)
@[simp]
theorem equivShrink_symm_add {α : Type u_1} [Add α] [Small.{u_2, u_1} α] (x : Shrink α) (y : Shrink α) :
(equivShrink α).symm (x + y) = (equivShrink α).symm x + (equivShrink α).symm y
@[simp]
theorem equivShrink_add {α : Type u_1} [Add α] [Small.{u_2, u_1} α] (x : α) (y : α) :
↑(equivShrink α) (x + y) = ↑(equivShrink α) x + ↑(equivShrink α) y
@[simp]
theorem equivShrink_symm_mul {α : Type u_1} [Mul α] [Small.{u_2, u_1} α] (x : Shrink α) (y : Shrink α) :
(equivShrink α).symm (x * y) = (equivShrink α).symm x * (equivShrink α).symm y
@[simp]
theorem equivShrink_mul {α : Type u_1} [Mul α] [Small.{u_2, u_1} α] (x : α) (y : α) :
↑(equivShrink α) (x * y) = ↑(equivShrink α) x * ↑(equivShrink α) y
instance instSubShrink {α : Type u_1} [Sub α] [Small.{u_2, u_1} α] :
Sub (Shrink α)
instance instDivShrink {α : Type u_1} [Div α] [Small.{u_2, u_1} α] :
Div (Shrink α)
@[simp]
theorem equivShrink_symm_sub {α : Type u_1} [Sub α] [Small.{u_2, u_1} α] (x : Shrink α) (y : Shrink α) :
(equivShrink α).symm (x - y) = (equivShrink α).symm x - (equivShrink α).symm y
@[simp]
theorem equivShrink_sub {α : Type u_1} [Sub α] [Small.{u_2, u_1} α] (x : α) (y : α) :
↑(equivShrink α) (x - y) = ↑(equivShrink α) x - ↑(equivShrink α) y
@[simp]
theorem equivShrink_symm_div {α : Type u_1} [Div α] [Small.{u_2, u_1} α] (x : Shrink α) (y : Shrink α) :
(equivShrink α).symm (x / y) = (equivShrink α).symm x / (equivShrink α).symm y
@[simp]
theorem equivShrink_div {α : Type u_1} [Div α] [Small.{u_2, u_1} α] (x : α) (y : α) :
↑(equivShrink α) (x / y) = ↑(equivShrink α) x / ↑(equivShrink α) y
instance instNegShrink {α : Type u_1} [Neg α] [Small.{u_2, u_1} α] :
Neg (Shrink α)
instance instInvShrink {α : Type u_1} [Inv α] [Small.{u_2, u_1} α] :
Inv (Shrink α)
@[simp]
theorem equivShrink_symm_neg {α : Type u_1} [Neg α] [Small.{u_2, u_1} α] (x : Shrink α) :
(equivShrink α).symm (-x) = -(equivShrink α).symm x
@[simp]
theorem equivShrink_neg {α : Type u_1} [Neg α] [Small.{u_2, u_1} α] (x : α) :
↑(equivShrink α) (-x) = -↑(equivShrink α) x
@[simp]
theorem equivShrink_symm_inv {α : Type u_1} [Inv α] [Small.{u_2, u_1} α] (x : Shrink α) :
(equivShrink α).symm x⁻¹ = ((equivShrink α).symm x)⁻¹
@[simp]
theorem equivShrink_inv {α : Type u_1} [Inv α] [Small.{u_2, u_1} α] (x : α) :
↑(equivShrink α) x⁻¹ = (↑(equivShrink α) x)⁻¹
instance instMonoidShrink {α : Type u_1} [Monoid α] [Small.{u_2, u_1} α] :
instance instGroupShrink {α : Type u_1} [Group α] [Small.{u_2, u_1} α] :