Documentation

Mathlib.MeasureTheory.Constructions.ClosedCompactCylinders

Cylinders with closed compact bases #

We define the set of all cylinders with closed compact bases. Those sets play a role in the proof of Kolmogorov's extension theorem.

Main definitions #

Main statements #

def MeasureTheory.closedCompactCylinders {ι : Type u_1} (X : ιType u_2) [(i : ι) → TopologicalSpace (X i)] :
Set (Set ((i : ι) → X i))

The set of all cylinders based on closed compact sets. Note that such a set is closed, but not compact in general (for instance, the whole space is always a closed compact cylinder).

Equations
Instances For
    theorem MeasureTheory.mem_closedCompactCylinders {ι : Type u_1} {X : ιType u_2} [(i : ι) → TopologicalSpace (X i)] (t : Set ((i : ι) → X i)) :
    t closedCompactCylinders X ∃ (s : Finset ι) (S : Set ((i : { x : ι // x s }) → X i)), IsClosed S IsCompact S t = cylinder s S
    noncomputable def MeasureTheory.closedCompactCylinders.finset {ι : Type u_1} {X : ιType u_2} [(i : ι) → TopologicalSpace (X i)] {t : Set ((i : ι) → X i)} (ht : t closedCompactCylinders X) :

    A finset s such that t = cylinder s S. S is given by closedCompactCylinders.set.

    Equations
    Instances For
      def MeasureTheory.closedCompactCylinders.set {ι : Type u_1} {X : ιType u_2} [(i : ι) → TopologicalSpace (X i)] {t : Set ((i : ι) → X i)} (ht : t closedCompactCylinders X) :
      Set ((i : { x : ι // x finset ht }) → X i)

      A set S such that t = cylinder s S. s is given by closedCompactCylinders.finset.

      Equations
      Instances For
        theorem MeasureTheory.closedCompactCylinders.isClosed {ι : Type u_1} {X : ιType u_2} [(i : ι) → TopologicalSpace (X i)] {t : Set ((i : ι) → X i)} (ht : t closedCompactCylinders X) :
        theorem MeasureTheory.closedCompactCylinders.isCompact {ι : Type u_1} {X : ιType u_2} [(i : ι) → TopologicalSpace (X i)] {t : Set ((i : ι) → X i)} (ht : t closedCompactCylinders X) :
        theorem MeasureTheory.closedCompactCylinders.eq_cylinder {ι : Type u_1} {X : ιType u_2} [(i : ι) → TopologicalSpace (X i)] {t : Set ((i : ι) → X i)} (ht : t closedCompactCylinders X) :
        t = cylinder (finset ht) (set ht)
        theorem MeasureTheory.cylinder_mem_closedCompactCylinders {ι : Type u_1} {X : ιType u_2} [(i : ι) → TopologicalSpace (X i)] (s : Finset ι) (S : Set ((i : { x : ι // x s }) → X i)) (hS_closed : IsClosed S) (hS_compact : IsCompact S) :
        theorem MeasureTheory.mem_measurableCylinders_of_mem_closedCompactCylinders {ι : Type u_1} {X : ιType u_2} [(i : ι) → TopologicalSpace (X i)] {t : Set ((i : ι) → X i)} [(i : ι) → MeasurableSpace (X i)] [∀ (i : ι), SecondCountableTopology (X i)] [∀ (i : ι), OpensMeasurableSpace (X i)] (ht : t closedCompactCylinders X) :