Documentation

Mathlib.MeasureTheory.Function.Piecewise

Measurability of piecewise functions #

In this file, we prove some results about measurability of functions defined by using IndexedPartition.piecewise.

theorem IndexedPartition.measurable_piecewise {ι : Type u_1} {α : Type u_2} {β : Type u_3} [MeasurableSpace α] {s : ιSet α} {f : ιαβ} [MeasurableSpace β] [Countable ι] (hs : IndexedPartition s) (hm : ∀ (i : ι), MeasurableSet (s i)) (hf : ∀ (i : ι), Measurable (f i)) :
theorem IndexedPartition.aemeasurable_piecewise {ι : Type u_1} {α : Type u_2} {β : Type u_3} [MeasurableSpace α] {s : ιSet α} {f : ιαβ} {μ : MeasureTheory.Measure α} [MeasurableSpace β] [Countable ι] (hs : IndexedPartition s) (hm : ∀ (i : ι), MeasurableSet (s i)) (hf : ∀ (i : ι), AEMeasurable (f i) μ) :
def IndexedPartition.simpleFunc_piecewise {ι : Type u_1} {α : Type u_2} {β : Type u_3} [MeasurableSpace α] {s : ιSet α} [Finite ι] (hs : IndexedPartition s) (hm : ∀ (i : ι), MeasurableSet (s i)) (f : ιMeasureTheory.SimpleFunc α β) :

This is the analogue of SimpleFunc.piecewise for IndexedPartition.

Equations
Instances For
    theorem IndexedPartition.stronglyMeasurable_piecewise {ι : Type u_1} {α : Type u_2} {β : Type u_3} [MeasurableSpace α] {s : ιSet α} {f : ιαβ} [Countable ι] (hs : IndexedPartition s) (hm : ∀ (i : ι), MeasurableSet (s i)) [TopologicalSpace β] (hf : ∀ (i : ι), MeasureTheory.StronglyMeasurable (f i)) :
    theorem IndexedPartition.aestronglyMeasurable_piecewise {ι : Type u_1} {α : Type u_2} {β : Type u_3} [MeasurableSpace α] {s : ιSet α} {f : ιαβ} {μ : MeasureTheory.Measure α} [Countable ι] (hs : IndexedPartition s) (hm : ∀ (i : ι), MeasurableSet (s i)) [TopologicalSpace β] (hf : ∀ (i : ι), MeasureTheory.AEStronglyMeasurable (f i) μ) :