Measurability and integrability of the sinc function #
Main statements #
measurable_sinc
: the sinc function is measurable.integrable_sinc
: the sinc function is integrable with respect to any finite measure onℝ
.
theorem
Measurable.sinc
{α : Type u_1}
{x✝ : MeasurableSpace α}
{f : α → ℝ}
(hf : Measurable f)
:
Measurable fun (x : α) => Real.sinc (f x)
theorem
AEMeasurable.sinc
{α : Type u_1}
{x✝ : MeasurableSpace α}
{f : α → ℝ}
{μ : MeasureTheory.Measure α}
(hf : AEMeasurable f μ)
:
AEMeasurable (fun (x : α) => Real.sinc (f x)) μ
theorem
MeasureTheory.StronglyMeasurable.sinc
{α : Type u_1}
{x✝ : MeasurableSpace α}
{f : α → ℝ}
(hf : StronglyMeasurable f)
:
StronglyMeasurable fun (x : α) => Real.sinc (f x)
theorem
MeasureTheory.AEStronglyMeasurable.sinc
{α : Type u_1}
{x✝ : MeasurableSpace α}
{f : α → ℝ}
{μ : Measure α}
(hf : AEStronglyMeasurable f μ)
:
AEStronglyMeasurable (fun (x : α) => Real.sinc (f x)) μ