Documentation

Mathlib.MeasureTheory.Group.FoelnerFilter

Følner sequences and filters - definitions and properties #

This file defines Følner sequences and filters for measurable spaces acted on by a group.

Definitions #

Main results #

Temporary design adaptations #

Tags #

Foelner, Følner filter, amenability, amenable group

structure IsAddFoelner (G : Type u_4) {X : Type u_5} [MeasurableSpace X] (μ : MeasureTheory.Measure X) [AddGroup G] [AddAction G X] {ι : Type u_6} (l : Filter ι) (F : ιSet X) :

Consider an additive group G acting on a measure space X. A sequence of sets F : ι → Set X is Følner with respect to the G-action, the measure μ, and a filter l on the indexing type ι, if:

  1. Each s in l is eventually measurable with finite non-zero measure,
  2. For all g : G, μ ((g +ᵥ F i) ∆ F i) / μ (F i) tends to 0.
Instances For
    theorem isAddFoelner_iff (G : Type u_4) {X : Type u_5} [MeasurableSpace X] (μ : MeasureTheory.Measure X) [AddGroup G] [AddAction G X] {ι : Type u_6} (l : Filter ι) (F : ιSet X) :
    IsAddFoelner G μ l F (∀ᶠ (i : ι) in l, MeasurableSet (F i)) (∀ᶠ (i : ι) in l, μ (F i) 0) (∀ᶠ (i : ι) in l, μ (F i) ) ∀ (g : G), Filter.Tendsto (fun (i : ι) => μ (symmDiff (g +ᵥ F i) (F i)) / μ (F i)) l (nhds 0)
    structure IsFoelner (G : Type u_1) {X : Type u_2} [MeasurableSpace X] (μ : MeasureTheory.Measure X) [Group G] [MulAction G X] {ι : Type u_3} (l : Filter ι) (F : ιSet X) :

    Consider a group G acting on a measure space X. A sequence of sets F : ι → Set X is Følner with respect to the G-action, the measure μ, and a filter l on the indexing type ι, if:

    1. Each s in l is eventually measurable with finite non-zero measure,
    2. For all g : G, μ ((g • F i) ∆ F i) / μ (F i) tends to 0.
    Instances For
      theorem isFoelner_iff (G : Type u_1) {X : Type u_2} [MeasurableSpace X] (μ : MeasureTheory.Measure X) [Group G] [MulAction G X] {ι : Type u_3} (l : Filter ι) (F : ιSet X) :
      IsFoelner G μ l F (∀ᶠ (i : ι) in l, MeasurableSet (F i)) (∀ᶠ (i : ι) in l, μ (F i) 0) (∀ᶠ (i : ι) in l, μ (F i) ) ∀ (g : G), Filter.Tendsto (fun (i : ι) => μ (symmDiff (g F i) (F i)) / μ (F i)) l (nhds 0)
      theorem IsFoelner.univ_of_isFiniteMeasure {G : Type u_1} {X : Type u_2} [MeasurableSpace X] {μ : MeasureTheory.Measure X} [Group G] [MulAction G X] {ι : Type u_3} {l : Filter ι} [NeZero μ] [MeasureTheory.IsFiniteMeasure μ] :
      IsFoelner G μ l fun (x : ι) => Set.univ

      The constant sequence X is Følner if X has finite measure.

      theorem IsAddFoelner.univ_of_isFiniteMeasure {G : Type u_1} {X : Type u_2} [MeasurableSpace X] {μ : MeasureTheory.Measure X} [AddGroup G] [AddAction G X] {ι : Type u_3} {l : Filter ι} [NeZero μ] [MeasureTheory.IsFiniteMeasure μ] :
      IsAddFoelner G μ l fun (x : ι) => Set.univ

      The constant sequence X is Følner if X has finite measure.

      theorem IsFoelner.mono {G : Type u_1} {X : Type u_2} [MeasurableSpace X] {μ : MeasureTheory.Measure X} [Group G] [MulAction G X] {ι : Type u_3} {l : Filter ι} {F : ιSet X} {l' : Filter ι} (hfoel : IsFoelner G μ l F) (hle : l' l) :
      IsFoelner G μ l' F
      theorem IsAddFoelner.mono {G : Type u_1} {X : Type u_2} [MeasurableSpace X] {μ : MeasureTheory.Measure X} [AddGroup G] [AddAction G X] {ι : Type u_3} {l : Filter ι} {F : ιSet X} {l' : Filter ι} (hfoel : IsAddFoelner G μ l F) (hle : l' l) :
      IsAddFoelner G μ l' F
      theorem IsFoelner.comp_tendsto {G : Type u_1} {X : Type u_2} [MeasurableSpace X] {μ : MeasureTheory.Measure X} [Group G] [MulAction G X] {ι : Type u_3} {l : Filter ι} {F : ιSet X} {ι' : Type u_4} {l' : Filter ι'} {φ : ι'ι} (hfoel : IsFoelner G μ l F) (htendsto : Filter.Tendsto φ l' l) :
      IsFoelner G μ l' (F φ)
      theorem IsAddFoelner.comp_tendsto {G : Type u_1} {X : Type u_2} [MeasurableSpace X] {μ : MeasureTheory.Measure X} [AddGroup G] [AddAction G X] {ι : Type u_3} {l : Filter ι} {F : ιSet X} {ι' : Type u_4} {l' : Filter ι'} {φ : ι'ι} (hfoel : IsAddFoelner G μ l F) (htendsto : Filter.Tendsto φ l' l) :
      IsAddFoelner G μ l' (F φ)
      noncomputable def IsFoelner.mean {X : Type u_2} [MeasurableSpace X] (μ : MeasureTheory.Measure X) {ι : Type u_3} (u : Ultrafilter ι) (F : ιSet X) (s : Set X) :

      The limit along an ultrafilter of the density of a set with respect to a sequence in X.

      Equations
      Instances For
        noncomputable def IsAddFoelner.mean {X : Type u_2} [MeasurableSpace X] (μ : MeasureTheory.Measure X) {ι : Type u_3} (u : Ultrafilter ι) (F : ιSet X) (s : Set X) :

        The limit along an ultrafilter of the density of a set with respect to a sequence in X.

        Equations
        Instances For
          theorem IsFoelner.tendsto_nhds_mean {G : Type u_1} {X : Type u_2} [MeasurableSpace X] {μ : MeasureTheory.Measure X} [Group G] [MulAction G X] {ι : Type u_3} {u : Ultrafilter ι} {F : ιSet X} (hfoel : IsFoelner G μ (↑u) F) (s : Set X) :
          Filter.Tendsto (fun (i : ι) => μ (s F i) / μ (F i)) (↑u) (nhds (mean μ u F s))
          theorem IsAddFoelner.tendsto_nhds_mean {G : Type u_1} {X : Type u_2} [MeasurableSpace X] {μ : MeasureTheory.Measure X} [AddGroup G] [AddAction G X] {ι : Type u_3} {u : Ultrafilter ι} {F : ιSet X} (hfoel : IsAddFoelner G μ (↑u) F) (s : Set X) :
          Filter.Tendsto (fun (i : ι) => μ (s F i) / μ (F i)) (↑u) (nhds (mean μ u F s))
          theorem IsFoelner.mean_univ_eq_one {G : Type u_1} {X : Type u_2} [MeasurableSpace X] {μ : MeasureTheory.Measure X} [Group G] [MulAction G X] {ι : Type u_3} {u : Ultrafilter ι} {F : ιSet X} (hfoel : IsFoelner G μ (↑u) F) :
          mean μ u F Set.univ = 1
          theorem IsAddFoelner.mean_univ_eq_zero {G : Type u_1} {X : Type u_2} [MeasurableSpace X] {μ : MeasureTheory.Measure X} [AddGroup G] [AddAction G X] {ι : Type u_3} {u : Ultrafilter ι} {F : ιSet X} (hfoel : IsAddFoelner G μ (↑u) F) :
          mean μ u F Set.univ = 1
          theorem IsFoelner.mean_union_eq_add_of_disjoint {G : Type u_1} {X : Type u_2} [MeasurableSpace X] {μ : MeasureTheory.Measure X} [Group G] [MulAction G X] {ι : Type u_3} {u : Ultrafilter ι} {F : ιSet X} (hfoel : IsFoelner G μ (↑u) F) (s t : Set X) (ht : MeasurableSet t) (hdisj : Disjoint s t) :
          mean μ u F (s t) = mean μ u F s + mean μ u F t
          theorem IsAddFoelner.mean_union_eq_add_of_disjoint {G : Type u_1} {X : Type u_2} [MeasurableSpace X] {μ : MeasureTheory.Measure X} [AddGroup G] [AddAction G X] {ι : Type u_3} {u : Ultrafilter ι} {F : ιSet X} (hfoel : IsAddFoelner G μ (↑u) F) (s t : Set X) (ht : MeasurableSet t) (hdisj : Disjoint s t) :
          mean μ u F (s t) = mean μ u F s + mean μ u F t
          theorem IsFoelner.tendsto_meas_smul_symmDiff_smul {G : Type u_1} {X : Type u_2} [MeasurableSpace X] {μ : MeasureTheory.Measure X} [Group G] [MulAction G X] {ι : Type u_3} {u : Ultrafilter ι} {F : ιSet X} [MeasureTheory.SMulInvariantMeasure G X μ] (hfoel : IsFoelner G μ (↑u) F) (g h : G) :
          Filter.Tendsto (fun (i : ι) => μ (symmDiff (g F i) (h F i)) / μ (F i)) (↑u) (nhds 0)
          theorem IsAddFoelner.tendsto_meas_vadd_symmDiff_vadd {G : Type u_1} {X : Type u_2} [MeasurableSpace X] {μ : MeasureTheory.Measure X} [AddGroup G] [AddAction G X] {ι : Type u_3} {u : Ultrafilter ι} {F : ιSet X} [MeasureTheory.VAddInvariantMeasure G X μ] (hfoel : IsAddFoelner G μ (↑u) F) (g h : G) :
          Filter.Tendsto (fun (i : ι) => μ (symmDiff (g +ᵥ F i) (h +ᵥ F i)) / μ (F i)) (↑u) (nhds 0)
          theorem IsFoelner.mean_smul_eq_mean_smul {G : Type u_1} {X : Type u_2} [MeasurableSpace X] {μ : MeasureTheory.Measure X} [Group G] [MulAction G X] {ι : Type u_3} {u : Ultrafilter ι} {F : ιSet X} [MeasureTheory.SMulInvariantMeasure G X μ] (hfoel : IsFoelner G μ (↑u) F) (g h : G) (s : Set X) :
          mean μ u F (g s) = mean μ u F (h s)
          theorem IsAddFoelner.mean_vadd_eq_mean_vadd {G : Type u_1} {X : Type u_2} [MeasurableSpace X] {μ : MeasureTheory.Measure X} [AddGroup G] [AddAction G X] {ι : Type u_3} {u : Ultrafilter ι} {F : ιSet X} [MeasureTheory.VAddInvariantMeasure G X μ] (hfoel : IsAddFoelner G μ (↑u) F) (g h : G) (s : Set X) :
          mean μ u F (g +ᵥ s) = mean μ u F (h +ᵥ s)
          theorem IsFoelner.mean_smul_eq_mean {G : Type u_1} {X : Type u_2} [MeasurableSpace X] {μ : MeasureTheory.Measure X} [Group G] [MulAction G X] {ι : Type u_3} {u : Ultrafilter ι} {F : ιSet X} [MeasureTheory.SMulInvariantMeasure G X μ] (hfoel : IsFoelner G μ (↑u) F) (g : G) (s : Set X) :
          mean μ u F (g s) = mean μ u F s
          theorem IsAddFoelner.mean_vadd_eq_mean {G : Type u_1} {X : Type u_2} [MeasurableSpace X] {μ : MeasureTheory.Measure X} [AddGroup G] [AddAction G X] {ι : Type u_3} {u : Ultrafilter ι} {F : ιSet X} [MeasureTheory.VAddInvariantMeasure G X μ] (hfoel : IsAddFoelner G μ (↑u) F) (g : G) (s : Set X) :
          mean μ u F (g +ᵥ s) = mean μ u F s
          theorem IsFoelner.amenable {G : Type u_1} {X : Type u_2} [MeasurableSpace X] {μ : MeasureTheory.Measure X} [Group G] [MulAction G X] {ι : Type u_3} {l : Filter ι} {F : ιSet X} [MeasureTheory.SMulInvariantMeasure G X μ] [l.NeBot] (hfoel : IsFoelner G μ l F) :
          ∃ (m : Set XENNReal), m Set.univ = 1 (∀ (s t : Set X), MeasurableSet tDisjoint s tm (s t) = m s + m t) ∀ (g : G) (s : Set X), m (g s) = m s

          If there exists a non-trivial Følner filter with respect to some group G acting on a measure space X, then there exists a G-invariant finitely additive probability measure on X.

          theorem IsAddFoelner.amenable {G : Type u_1} {X : Type u_2} [MeasurableSpace X] {μ : MeasureTheory.Measure X} [AddGroup G] [AddAction G X] {ι : Type u_3} {l : Filter ι} {F : ιSet X} [MeasureTheory.VAddInvariantMeasure G X μ] [l.NeBot] (hfoel : IsAddFoelner G μ l F) :
          ∃ (m : Set XENNReal), m Set.univ = 1 (∀ (s t : Set X), MeasurableSet tDisjoint s tm (s t) = m s + m t) ∀ (g : G) (s : Set X), m (g +ᵥ s) = m s

          If there exists a non-trivial Følner filter with respect to some additive group G acting on a measure space X, then there exists a G-invariant finitely additive probability measure on X.

          def maxFoelner (G : Type u_1) {X : Type u_2} [MeasurableSpace X] (μ : MeasureTheory.Measure X) [Group G] [MulAction G X] :

          The maximal Følner filter with respect to some group G acting on a measure space X is the pullback of 𝓝 0 along the map s ↦ μ (g • s) / μ s on measurable sets of finite non-zero measure.

          Equations
          Instances For
            def maxAddFoelner (G : Type u_1) {X : Type u_2} [MeasurableSpace X] (μ : MeasureTheory.Measure X) [AddGroup G] [AddAction G X] :

            The maximal Følner filter with respect to some additive group G acting on a measure space X is the pullback of 𝓝 0 along the map s ↦ μ (g +ᵥ s) / μ s on measurable sets of finite non-zero measure.

            Equations
            Instances For
              theorem isFoelner_iff_tendsto {G : Type u_1} {X : Type u_2} [MeasurableSpace X] {μ : MeasureTheory.Measure X} [Group G] [MulAction G X] {ι : Type u_3} (l : Filter ι) (F : ιSet X) :
              theorem isAddFoelner_iff_tendsto {G : Type u_1} {X : Type u_2} [MeasurableSpace X] {μ : MeasureTheory.Measure X} [AddGroup G] [AddAction G X] {ι : Type u_3} (l : Filter ι) (F : ιSet X) :
              theorem isFoelner_maxFoelner (G : Type u_1) {X : Type u_2} [MeasurableSpace X] (μ : MeasureTheory.Measure X) [Group G] [MulAction G X] :
              IsFoelner G μ (maxFoelner G μ) id
              theorem amenable_of_maxFoelner_neBot {G : Type u_1} {X : Type u_2} [MeasurableSpace X] {μ : MeasureTheory.Measure X} [Group G] [MulAction G X] [MeasureTheory.SMulInvariantMeasure G X μ] [(maxFoelner G μ).NeBot] :
              ∃ (m : Set XENNReal), m Set.univ = 1 (∀ (s t : Set X), MeasurableSet tDisjoint s tm (s t) = m s + m t) ∀ (g : G) (s : Set X), m (g s) = m s
              theorem amenable_of_maxAddFoelner_neBot {G : Type u_1} {X : Type u_2} [MeasurableSpace X] {μ : MeasureTheory.Measure X} [AddGroup G] [AddAction G X] [MeasureTheory.VAddInvariantMeasure G X μ] [(maxAddFoelner G μ).NeBot] :
              ∃ (m : Set XENNReal), m Set.univ = 1 (∀ (s t : Set X), MeasurableSet tDisjoint s tm (s t) = m s + m t) ∀ (g : G) (s : Set X), m (g +ᵥ s) = m s