Documentation

Mathlib.MeasureTheory.Group.IntegralConvolution

Bochner integrals of convolutions #

This file contains results about the Bochner integrals of convolutions of measures.

These results are not placed in the main convolution file because we don't want to import Bochner integrals over there.

Main statements #

theorem MeasureTheory.integrable_mconv_iff {M : Type u_1} {F : Type u_2} [Monoid M] {mM : MeasurableSpace M} [MeasurableMul₂ M] [NormedAddCommGroup F] {μ ν : Measure M} {f : MF} [SFinite ν] (hf : AEStronglyMeasurable f (μ.mconv ν)) :
Integrable f (μ.mconv ν) (∀ᵐ (x : M) μ, Integrable (fun (y : M) => f (x * y)) ν) Integrable (fun (x : M) => (y : M), f (x * y) ν) μ
theorem MeasureTheory.integrable_conv_iff {M : Type u_1} {F : Type u_2} [AddMonoid M] {mM : MeasurableSpace M} [MeasurableAdd₂ M] [NormedAddCommGroup F] {μ ν : Measure M} {f : MF} [SFinite ν] (hf : AEStronglyMeasurable f (μ.conv ν)) :
Integrable f (μ.conv ν) (∀ᵐ (x : M) μ, Integrable (fun (y : M) => f (x + y)) ν) Integrable (fun (x : M) => (y : M), f (x + y) ν) μ
theorem MeasureTheory.integral_mconv {M : Type u_1} {F : Type u_2} [Monoid M] {mM : MeasurableSpace M} [MeasurableMul₂ M] [NormedAddCommGroup F] {μ ν : Measure M} {f : MF} [NormedSpace F] [SFinite μ] [SFinite ν] (hf : Integrable f (μ.mconv ν)) :
(x : M), f x μ.mconv ν = (x : M), (y : M), f (x * y) ν μ
theorem MeasureTheory.integral_conv {M : Type u_1} {F : Type u_2} [AddMonoid M] {mM : MeasurableSpace M} [MeasurableAdd₂ M] [NormedAddCommGroup F] {μ ν : Measure M} {f : MF} [NormedSpace F] [SFinite μ] [SFinite ν] (hf : Integrable f (μ.conv ν)) :
(x : M), f x μ.conv ν = (x : M), (y : M), f (x + y) ν μ