Documentation

Mathlib.MeasureTheory.Integral.MeanValue

First mean value theorem for set integrals #

We prove versions of the first mean value theorem for set integrals.

Main results #

Tags #

first mean value theorem, set integral

theorem exists_eq_const_mul_setIntegral_of_ae_nonneg {α : Type u_1} [TopologicalSpace α] [MeasurableSpace α] {s : Set α} {f g : α} {μ : MeasureTheory.Measure α} (hs_conn : IsConnected s) (hs_meas : MeasurableSet s) (hf : ContinuousOn f s) (hg : MeasureTheory.IntegrableOn g s μ) (hfg : MeasureTheory.IntegrableOn (fun (x : α) => f x * g x) s μ) (hg0 : ∀ᵐ (x : α) μ.restrict s, 0 g x) :
cs, (x : α) in s, f x * g x μ = f c * (x : α) in s, g x μ

First mean value theorem for set integrals (a.e. nonnegativity). Let s be a connected measurable set. If f is continuous on s, g is integrable on s, f * g is integrable on s, and g is nonnegative a.e. on s w.r.t. μ.restrict s, then ∃ c ∈ s, (∫ x in s, f x * g x ∂μ) = f c * (∫ x in s, g x ∂μ).

theorem exists_eq_const_mul_setIntegral_of_nonneg {α : Type u_1} [TopologicalSpace α] [MeasurableSpace α] {s : Set α} {f g : α} {μ : MeasureTheory.Measure α} (hs_conn : IsConnected s) (hs_meas : MeasurableSet s) (hf : ContinuousOn f s) (hg : MeasureTheory.IntegrableOn g s μ) (hfg : MeasureTheory.IntegrableOn (fun (x : α) => f x * g x) s μ) (hg0 : xs, 0 g x) :
cs, (x : α) in s, f x * g x μ = f c * (x : α) in s, g x μ

First mean value theorem for set integrals (pointwise nonnegativity). Let s be a connected measurable set. If f is continuous on s, g is integrable on s, f * g is integrable on s, and g is nonnegative on s, then ∃ c ∈ s, (∫ x in s, f x * g x ∂μ) = f c * (∫ x in s, g x ∂μ)