First mean value theorem for set integrals #
We prove versions of the first mean value theorem for set integrals.
Main results #
exists_eq_const_mul_setIntegral_of_ae_nonneg(a.e. nonnegativity ofgons):∃ c ∈ s, (∫ x in s, f x * g x ∂μ) = f c * (∫ x in s, g x ∂μ).exists_eq_const_mul_setIntegral_of_nonneg(pointwise nonnegativity ofgons):∃ c ∈ s, (∫ x in s, f x * g x ∂μ) = f c * (∫ x in s, g x ∂μ).
Tags #
first mean value theorem, set integral
theorem
exists_eq_const_mul_setIntegral_of_ae_nonneg
{α : Type u_1}
[TopologicalSpace α]
[MeasurableSpace α]
{s : Set α}
{f g : α → ℝ}
{μ : MeasureTheory.Measure α}
(hs_conn : IsConnected s)
(hs_meas : MeasurableSet s)
(hf : ContinuousOn f s)
(hg : MeasureTheory.IntegrableOn g s μ)
(hfg : MeasureTheory.IntegrableOn (fun (x : α) => f x * g x) s μ)
(hg0 : ∀ᵐ (x : α) ∂μ.restrict s, 0 ≤ g x)
:
First mean value theorem for set integrals (a.e. nonnegativity).
Let s be a connected measurable set. If f is continuous on s, g is integrable on s,
f * g is integrable on s, and g is nonnegative a.e. on s w.r.t. μ.restrict s, then
∃ c ∈ s, (∫ x in s, f x * g x ∂μ) = f c * (∫ x in s, g x ∂μ).
theorem
exists_eq_const_mul_setIntegral_of_nonneg
{α : Type u_1}
[TopologicalSpace α]
[MeasurableSpace α]
{s : Set α}
{f g : α → ℝ}
{μ : MeasureTheory.Measure α}
(hs_conn : IsConnected s)
(hs_meas : MeasurableSet s)
(hf : ContinuousOn f s)
(hg : MeasureTheory.IntegrableOn g s μ)
(hfg : MeasureTheory.IntegrableOn (fun (x : α) => f x * g x) s μ)
(hg0 : ∀ x ∈ s, 0 ≤ g x)
:
First mean value theorem for set integrals (pointwise nonnegativity).
Let s be a connected measurable set. If f is continuous on s, g is integrable on s,
f * g is integrable on s, and g is nonnegative on s, then
∃ c ∈ s, (∫ x in s, f x * g x ∂μ) = f c * (∫ x in s, g x ∂μ)