Documentation

Mathlib.MeasureTheory.MeasurableSpace.Prod

The product sigma algebra #

This file talks about the measurability of operations on binary functions.

theorem generateFrom_prod_eq {α : Type u_3} {β : Type u_4} {C : Set (Set α)} {D : Set (Set β)} (hC : IsCountablySpanning C) (hD : IsCountablySpanning D) :
Prod.instMeasurableSpace = MeasurableSpace.generateFrom (Set.image2 (fun (x1 : Set α) (x2 : Set β) => x1 ×ˢ x2) C D)

The product of generated σ-algebras is the one generated by rectangles, if both generating sets are countably spanning.

theorem generateFrom_eq_prod {α : Type u_1} {β : Type u_2} [MeasurableSpace α] [MeasurableSpace β] {C : Set (Set α)} {D : Set (Set β)} (hC : MeasurableSpace.generateFrom C = inst✝) (hD : MeasurableSpace.generateFrom D = inst✝¹) (h2C : IsCountablySpanning C) (h2D : IsCountablySpanning D) :
MeasurableSpace.generateFrom (Set.image2 (fun (x1 : Set α) (x2 : Set β) => x1 ×ˢ x2) C D) = Prod.instMeasurableSpace

If C and D generate the σ-algebras on α resp. β, then rectangles formed by C and D generate the σ-algebra on α × β.

theorem generateFrom_prod {α : Type u_1} {β : Type u_2} [MeasurableSpace α] [MeasurableSpace β] :
MeasurableSpace.generateFrom (Set.image2 (fun (x1 : Set α) (x2 : Set β) => x1 ×ˢ x2) {s : Set α | MeasurableSet s} {t : Set β | MeasurableSet t}) = Prod.instMeasurableSpace

The product σ-algebra is generated from boxes, i.e. s ×ˢ t for sets s : Set α and t : Set β.

theorem isPiSystem_prod {α : Type u_1} {β : Type u_2} [MeasurableSpace α] [MeasurableSpace β] :
IsPiSystem (Set.image2 (fun (x1 : Set α) (x2 : Set β) => x1 ×ˢ x2) {s : Set α | MeasurableSet s} {t : Set β | MeasurableSet t})

Rectangles form a π-system.

theorem MeasurableEmbedding.prodMap {α : Type u_3} {β : Type u_4} {γ : Type u_5} {δ : Type u_6} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} {mδ : MeasurableSpace δ} {f : αβ} {g : γδ} (hg : MeasurableEmbedding g) (hf : MeasurableEmbedding f) :
@[deprecated MeasurableEmbedding.prodMap]
theorem MeasurableEmbedding.prod_mk {α : Type u_3} {β : Type u_4} {γ : Type u_5} {δ : Type u_6} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} {mδ : MeasurableSpace δ} {f : αβ} {g : γδ} (hg : MeasurableEmbedding g) (hf : MeasurableEmbedding f) :

Alias of MeasurableEmbedding.prodMap.

theorem MeasurableEmbedding.prod_mk_left {α : Type u_1} [MeasurableSpace α] {β : Type u_3} {γ : Type u_4} [MeasurableSingletonClass α] {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} (x : α) {f : γβ} (hf : MeasurableEmbedding f) :
MeasurableEmbedding fun (y : γ) => (x, f y)
theorem MeasurableEmbedding.prod_mk_right {α : Type u_1} [MeasurableSpace α] {β : Type u_3} {γ : Type u_4} [MeasurableSingletonClass α] {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} {f : γβ} (hf : MeasurableEmbedding f) (x : α) :
MeasurableEmbedding fun (y : γ) => (f y, x)
theorem measurableEmbedding_prod_mk_right {α : Type u_1} {β : Type u_2} [MeasurableSpace α] [MeasurableSpace β] [MeasurableSingletonClass α] (x : α) :
MeasurableEmbedding fun (y : β) => (y, x)