Documentation

Mathlib.MeasureTheory.Measure.Lebesgue.Integral

Properties of integration with respect to the Lebesgue measure #

theorem volume_regionBetween_eq_integral {α : Type u_1} [MeasurableSpace α] {μ : MeasureTheory.Measure α} {f g : αReal} {s : Set α} [MeasureTheory.SigmaFinite μ] (f_int : MeasureTheory.IntegrableOn f s μ) (g_int : MeasureTheory.IntegrableOn g s μ) (hs : MeasurableSet s) (hfg : ∀ (x : α), Membership.mem s xLE.le (f x) (g x)) :

If two functions are integrable on a measurable set, and one function is less than or equal to the other on that set, then the volume of the region between the two functions can be represented as an integral.

If the sequence with n-th term the sup norm of fun x ↦ f (x + n) on the interval Icc 0 1, for n ∈ ℤ, is summable, then f is integrable on .

Substituting -x for x #

These lemmas are stated in terms of either Iic or Ioi (neglecting Iio and Ici) to match mathlib's conventions for integrals over finite intervals (see intervalIntegral). For the case of finite integrals, see intervalIntegral.integral_comp_neg.