Documentation

Mathlib.MeasureTheory.SpecificCodomains.Pi

Integrability in a product space #

We prove that f : X → Π i, E i is in Lᵖ if and only if for all i, f · i is in Lᵖ. We do the same for f : X → (E × F).

theorem MeasureTheory.memLp_pi_iff {X : Type u_1} {mX : MeasurableSpace X} {μ : Measure X} {p : ENNReal} {ι : Type u_2} [Fintype ι] {E : ιType u_3} [(i : ι) → NormedAddCommGroup (E i)] {f : X(i : ι) → E i} :
MemLp f p μ ∀ (i : ι), MemLp (fun (x : X) => f x i) p μ
theorem MeasureTheory.MemLp.of_eval {X : Type u_1} {mX : MeasurableSpace X} {μ : Measure X} {p : ENNReal} {ι : Type u_2} [Fintype ι] {E : ιType u_3} [(i : ι) → NormedAddCommGroup (E i)] {f : X(i : ι) → E i} :
(∀ (i : ι), MemLp (fun (x : X) => f x i) p μ)MemLp f p μ

Alias of the reverse direction of MeasureTheory.memLp_pi_iff.

theorem MeasureTheory.MemLp.eval {X : Type u_1} {mX : MeasurableSpace X} {μ : Measure X} {p : ENNReal} {ι : Type u_2} [Fintype ι] {E : ιType u_3} [(i : ι) → NormedAddCommGroup (E i)] {f : X(i : ι) → E i} :
MemLp f p μ∀ (i : ι), MemLp (fun (x : X) => f x i) p μ

Alias of the forward direction of MeasureTheory.memLp_pi_iff.

theorem MeasureTheory.integrable_pi_iff {X : Type u_1} {mX : MeasurableSpace X} {μ : Measure X} {ι : Type u_2} [Fintype ι] {E : ιType u_3} [(i : ι) → NormedAddCommGroup (E i)] {f : X(i : ι) → E i} :
Integrable f μ ∀ (i : ι), Integrable (fun (x : X) => f x i) μ
theorem MeasureTheory.Integrable.of_eval {X : Type u_1} {mX : MeasurableSpace X} {μ : Measure X} {ι : Type u_2} [Fintype ι] {E : ιType u_3} [(i : ι) → NormedAddCommGroup (E i)] {f : X(i : ι) → E i} :
(∀ (i : ι), Integrable (fun (x : X) => f x i) μ)Integrable f μ

Alias of the reverse direction of MeasureTheory.integrable_pi_iff.

theorem MeasureTheory.Integrable.eval {X : Type u_1} {mX : MeasurableSpace X} {μ : Measure X} {ι : Type u_2} [Fintype ι] {E : ιType u_3} [(i : ι) → NormedAddCommGroup (E i)] {f : X(i : ι) → E i} :
Integrable f μ∀ (i : ι), Integrable (fun (x : X) => f x i) μ

Alias of the forward direction of MeasureTheory.integrable_pi_iff.

theorem MeasureTheory.eval_integral {X : Type u_1} {mX : MeasurableSpace X} {μ : Measure X} {ι : Type u_2} [Fintype ι] {E : ιType u_3} [(i : ι) → NormedAddCommGroup (E i)] {f : X(i : ι) → E i} [(i : ι) → NormedSpace (E i)] [∀ (i : ι), CompleteSpace (E i)] (hf : ∀ (i : ι), Integrable (fun (x : X) => f x i) μ) (i : ι) :
( (x : X), f x μ) i = (x : X), f x i μ
theorem MeasureTheory.memLp_prod_iff {X : Type u_1} {mX : MeasurableSpace X} {μ : Measure X} {p : ENNReal} {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : XE × F} :
MemLp f p μ MemLp (fun (x : X) => (f x).1) p μ MemLp (fun (x : X) => (f x).2) p μ
theorem MeasureTheory.MemLp.fst {X : Type u_1} {mX : MeasurableSpace X} {μ : Measure X} {p : ENNReal} {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : XE × F} (h : MemLp f p μ) :
MemLp (fun (x : X) => (f x).1) p μ
theorem MeasureTheory.MemLp.snd {X : Type u_1} {mX : MeasurableSpace X} {μ : Measure X} {p : ENNReal} {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : XE × F} (h : MemLp f p μ) :
MemLp (fun (x : X) => (f x).2) p μ
theorem MeasureTheory.MemLp.of_fst_snd {X : Type u_1} {mX : MeasurableSpace X} {μ : Measure X} {p : ENNReal} {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : XE × F} :
MemLp (fun (x : X) => (f x).1) p μ MemLp (fun (x : X) => (f x).2) p μMemLp f p μ

Alias of the reverse direction of MeasureTheory.memLp_prod_iff.