Making a term in the language of rings from an element of the FreeCommRing #
This file defines the function FirstOrder.Ring.termOfFreeCommRing
which constructs a
Language.ring.Term α
from an element of FreeCommRing α
.
The theorem FirstOrder.Ring.realize_termOfFreeCommRing
shows that the term constructed when
realized in a ring R
is equal to the lift of the element of FreeCommRing α
to R
.
noncomputable def
FirstOrder.Ring.termOfFreeCommRing
{α : Type u_1}
(p : FreeCommRing α)
:
Language.ring.Term α
Make a Language.ring.Term α
from an element of FreeCommRing α
Equations
Instances For
@[simp]
theorem
FirstOrder.Ring.realize_termOfFreeCommRing
{α : Type u_1}
{R : Type u_2}
[CommRing R]
[CompatibleRing R]
(p : FreeCommRing α)
(v : α → R)
:
Language.Term.realize v (termOfFreeCommRing p) = (FreeCommRing.lift v) p