Documentation

Mathlib.NumberTheory.EllipticDivisibilitySequence

Elliptic divisibility sequences #

This file defines the type of an elliptic divisibility sequence (EDS) and a few examples.

Mathematical background #

Let $R$ be a commutative ring. An elliptic sequence is a sequence $W : \mathbb{Z} \to R$ satisfying $$ W(m + n)W(m - n)W(r)^2 = W(m + r)W(m - r)W(n)^2 - W(n + r)W(n - r)W(m)^2, $$ for any $m, n, r \in \mathbb{Z}$. A divisibility sequence is a sequence $W : \mathbb{Z} \to R$ satisfying $W(m) \mid W(n)$ for any $m, n \in \mathbb{Z}$ such that $m \mid n$.

Some examples of EDSs include

Main definitions #

Main statements #

Implementation notes #

The normalised EDS normEDS b c d n is defined in terms of the auxiliary sequence preNormEDS (b ^ 4) c d n, which are equal when n is odd, and which differ by a factor of b when n is even. This coincides with the definition in the references since both agree for normEDS b c d 2 and for normEDS b c d 4, and the correct factors of b are removed in normEDS b c d (2 * (m + 2) + 1) and in normEDS b c d (2 * (m + 3)).

One reason is to avoid the necessity for ring division by b in the inductive definition of normEDS b c d (2 * (m + 3)). The idea is that, it can be shown that normEDS b c d (2 * (m + 3)) always contains a factor of b, so it is possible to remove a factor of b a posteriori, but stating this lemma requires first defining normEDS b c d (2 * (m + 3)), which requires having this factor of b a priori. Another reason is to allow the definition of univariate $n$-division polynomials of elliptic curves, omitting a factor of the bivariate $2$-division polynomial.

References #

M Ward, Memoir on Elliptic Divisibility Sequences

Tags #

elliptic, divisibility, sequence

def IsEllSequence {R : Type u} [CommRing R] (W : R) :

The proposition that a sequence indexed by integers is an elliptic sequence.

Equations
Instances For
    def IsDivSequence {R : Type u} [CommRing R] (W : R) :

    The proposition that a sequence indexed by integers is a divisibility sequence.

    Equations
    Instances For
      def IsEllDivSequence {R : Type u} [CommRing R] (W : R) :

      The proposition that a sequence indexed by integers is an EDS.

      Equations
      Instances For

        The identity sequence is an EDS.

        theorem IsEllSequence.smul {R : Type u} [CommRing R] {W : R} (h : IsEllSequence W) (x : R) :
        theorem IsDivSequence.smul {R : Type u} [CommRing R] {W : R} (h : IsDivSequence W) (x : R) :
        theorem IsEllDivSequence.smul {R : Type u} [CommRing R] {W : R} (h : IsEllDivSequence W) (x : R) :
        @[irreducible]
        def preNormEDS' {R : Type u} [CommRing R] (b c d : R) :
        R

        The auxiliary sequence for a normalised EDS W : ℕ → R, with initial values W(0) = 0, W(1) = 1, W(2) = 1, W(3) = c, and W(4) = d and extra parameter b.

        Equations
        Instances For
          @[simp]
          theorem preNormEDS'_zero {R : Type u} [CommRing R] (b c d : R) :
          preNormEDS' b c d 0 = 0
          @[simp]
          theorem preNormEDS'_one {R : Type u} [CommRing R] (b c d : R) :
          preNormEDS' b c d 1 = 1
          @[simp]
          theorem preNormEDS'_two {R : Type u} [CommRing R] (b c d : R) :
          preNormEDS' b c d 2 = 1
          @[simp]
          theorem preNormEDS'_three {R : Type u} [CommRing R] (b c d : R) :
          preNormEDS' b c d 3 = c
          @[simp]
          theorem preNormEDS'_four {R : Type u} [CommRing R] (b c d : R) :
          preNormEDS' b c d 4 = d
          theorem preNormEDS'_odd {R : Type u} [CommRing R] (b c d : R) (m : ) :
          preNormEDS' b c d (2 * (m + 2) + 1) = (preNormEDS' b c d (m + 4) * preNormEDS' b c d (m + 2) ^ 3 * if Even m then b else 1) - preNormEDS' b c d (m + 1) * preNormEDS' b c d (m + 3) ^ 3 * if Even m then 1 else b
          theorem preNormEDS'_even {R : Type u} [CommRing R] (b c d : R) (m : ) :
          preNormEDS' b c d (2 * (m + 3)) = preNormEDS' b c d (m + 2) ^ 2 * preNormEDS' b c d (m + 3) * preNormEDS' b c d (m + 5) - preNormEDS' b c d (m + 1) * preNormEDS' b c d (m + 3) * preNormEDS' b c d (m + 4) ^ 2
          def preNormEDS {R : Type u} [CommRing R] (b c d : R) (n : ) :
          R

          The auxiliary sequence for a normalised EDS W : ℤ → R, with initial values W(0) = 0, W(1) = 1, W(2) = 1, W(3) = c, and W(4) = d and extra parameter b.

          This extends preNormEDS' by defining its values at negative integers.

          Equations
          Instances For
            @[simp]
            theorem preNormEDS_ofNat {R : Type u} [CommRing R] (b c d : R) (n : ) :
            preNormEDS b c d n = preNormEDS' b c d n
            @[simp]
            theorem preNormEDS_zero {R : Type u} [CommRing R] (b c d : R) :
            preNormEDS b c d 0 = 0
            @[simp]
            theorem preNormEDS_one {R : Type u} [CommRing R] (b c d : R) :
            preNormEDS b c d 1 = 1
            @[simp]
            theorem preNormEDS_two {R : Type u} [CommRing R] (b c d : R) :
            preNormEDS b c d 2 = 1
            @[simp]
            theorem preNormEDS_three {R : Type u} [CommRing R] (b c d : R) :
            preNormEDS b c d 3 = c
            @[simp]
            theorem preNormEDS_four {R : Type u} [CommRing R] (b c d : R) :
            preNormEDS b c d 4 = d
            theorem preNormEDS_odd {R : Type u} [CommRing R] (b c d : R) (m : ) :
            preNormEDS b c d (2 * (m + 2) + 1) = (preNormEDS b c d (m + 4) * preNormEDS b c d (m + 2) ^ 3 * if Even m then b else 1) - preNormEDS b c d (m + 1) * preNormEDS b c d (m + 3) ^ 3 * if Even m then 1 else b
            theorem preNormEDS_even {R : Type u} [CommRing R] (b c d : R) (m : ) :
            preNormEDS b c d (2 * (m + 3)) = preNormEDS b c d (m + 2) ^ 2 * preNormEDS b c d (m + 3) * preNormEDS b c d (m + 5) - preNormEDS b c d (m + 1) * preNormEDS b c d (m + 3) * preNormEDS b c d (m + 4) ^ 2
            @[simp]
            theorem preNormEDS_neg {R : Type u} [CommRing R] (b c d : R) (n : ) :
            preNormEDS b c d (-n) = -preNormEDS b c d n
            def normEDS {R : Type u} [CommRing R] (b c d : R) (n : ) :
            R

            The canonical example of a normalised EDS W : ℤ → R, with initial values W(0) = 0, W(1) = 1, W(2) = b, W(3) = c, and W(4) = d * b.

            This is defined in terms of preNormEDS whose even terms differ by a factor of b.

            Equations
            Instances For
              @[simp]
              theorem normEDS_ofNat {R : Type u} [CommRing R] (b c d : R) (n : ) :
              normEDS b c d n = preNormEDS' (b ^ 4) c d n * if Even n then b else 1
              @[simp]
              theorem normEDS_zero {R : Type u} [CommRing R] (b c d : R) :
              normEDS b c d 0 = 0
              @[simp]
              theorem normEDS_one {R : Type u} [CommRing R] (b c d : R) :
              normEDS b c d 1 = 1
              @[simp]
              theorem normEDS_two {R : Type u} [CommRing R] (b c d : R) :
              normEDS b c d 2 = b
              @[simp]
              theorem normEDS_three {R : Type u} [CommRing R] (b c d : R) :
              normEDS b c d 3 = c
              @[simp]
              theorem normEDS_four {R : Type u} [CommRing R] (b c d : R) :
              normEDS b c d 4 = d * b
              theorem normEDS_odd {R : Type u} [CommRing R] (b c d : R) (m : ) :
              normEDS b c d (2 * (m + 2) + 1) = normEDS b c d (m + 4) * normEDS b c d (m + 2) ^ 3 - normEDS b c d (m + 1) * normEDS b c d (m + 3) ^ 3
              theorem normEDS_even {R : Type u} [CommRing R] (b c d : R) (m : ) :
              normEDS b c d (2 * (m + 3)) * b = normEDS b c d (m + 2) ^ 2 * normEDS b c d (m + 3) * normEDS b c d (m + 5) - normEDS b c d (m + 1) * normEDS b c d (m + 3) * normEDS b c d (m + 4) ^ 2
              @[simp]
              theorem normEDS_neg {R : Type u} [CommRing R] (b c d : R) (n : ) :
              normEDS b c d (-n) = -normEDS b c d n
              noncomputable def normEDSRec' {P : Sort u} (zero : P 0) (one : P 1) (two : P 2) (three : P 3) (four : P 4) (even : (m : ) → ((k : ) → k < 2 * (m + 3)P k)P (2 * (m + 3))) (odd : (m : ) → ((k : ) → k < 2 * (m + 2) + 1P k)P (2 * (m + 2) + 1)) (n : ) :
              P n

              Strong recursion principle for a normalised EDS: if we have

              • P 0, P 1, P 2, P 3, and P 4,
              • for all m : ℕ we can prove P (2 * (m + 3)) from P k for all k < 2 * (m + 3), and
              • for all m : ℕ we can prove P (2 * (m + 2) + 1) from P k for all k < 2 * (m + 2) + 1, then we have P n for all n : ℕ.
              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                noncomputable def normEDSRec {P : Sort u} (zero : P 0) (one : P 1) (two : P 2) (three : P 3) (four : P 4) (even : (m : ) → P (m + 1)P (m + 2)P (m + 3)P (m + 4)P (m + 5)P (2 * (m + 3))) (odd : (m : ) → P (m + 1)P (m + 2)P (m + 3)P (m + 4)P (2 * (m + 2) + 1)) (n : ) :
                P n

                Recursion principle for a normalised EDS: if we have

                • P 0, P 1, P 2, P 3, and P 4,
                • for all m : ℕ we can prove P (2 * (m + 3)) from P (m + 1), P (m + 2), P (m + 3), P (m + 4), and P (m + 5), and
                • for all m : ℕ we can prove P (2 * (m + 2) + 1) from P (m + 1), P (m + 2), P (m + 3), and P (m + 4), then we have P n for all n : ℕ.
                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  theorem map_preNormEDS' {R : Type u} {S : Type v} [CommRing R] [CommRing S] (f : R →+* S) (b c d : R) (n : ) :
                  f (preNormEDS' b c d n) = preNormEDS' (f b) (f c) (f d) n
                  theorem map_preNormEDS {R : Type u} {S : Type v} [CommRing R] [CommRing S] (f : R →+* S) (b c d : R) (n : ) :
                  f (preNormEDS b c d n) = preNormEDS (f b) (f c) (f d) n
                  theorem map_normEDS {R : Type u} {S : Type v} [CommRing R] [CommRing S] (f : R →+* S) (b c d : R) (n : ) :
                  f (normEDS b c d n) = normEDS (f b) (f c) (f d) n