Documentation

Mathlib.NumberTheory.FLT.Four

Fermat's Last Theorem for the case n = 4 #

There are no non-zero integers a, b and c such that a ^ 4 + b ^ 4 = c ^ 4.

def Fermat42 (a b c : Int) :

Shorthand for three non-zero integers a, b, and c satisfying a ^ 4 + b ^ 4 = c ^ 2. We will show that no integers satisfy this equation. Clearly Fermat's Last theorem for n = 4 follows.

Equations
Instances For
    theorem Fermat42.comm {a b c : Int} :
    Iff (Fermat42 a b c) (Fermat42 b a c)
    theorem Fermat42.mul {a b c k : Int} (hk0 : Ne k 0) :
    Iff (Fermat42 a b c) (Fermat42 (HMul.hMul k a) (HMul.hMul k b) (HMul.hMul (HPow.hPow k 2) c))
    theorem Fermat42.ne_zero {a b c : Int} (h : Fermat42 a b c) :
    Ne c 0
    def Fermat42.Minimal (a b c : Int) :

    We say a solution to a ^ 4 + b ^ 4 = c ^ 2 is minimal if there is no other solution with a smaller c (in absolute value).

    Equations
    Instances For
      theorem Fermat42.exists_minimal {a b c : Int} (h : Fermat42 a b c) :
      Exists fun (a0 : Int) => Exists fun (b0 : Int) => Exists fun (c0 : Int) => Minimal a0 b0 c0

      if we have a solution to a ^ 4 + b ^ 4 = c ^ 2 then there must be a minimal one.

      theorem Fermat42.coprime_of_minimal {a b c : Int} (h : Minimal a b c) :

      a minimal solution to a ^ 4 + b ^ 4 = c ^ 2 must have a and b coprime.

      theorem Fermat42.minimal_comm {a b c : Int} :
      Minimal a b cMinimal b a c

      We can swap a and b in a minimal solution to a ^ 4 + b ^ 4 = c ^ 2.

      theorem Fermat42.neg_of_minimal {a b c : Int} :
      Minimal a b cMinimal a b (Neg.neg c)

      We can assume that a minimal solution to a ^ 4 + b ^ 4 = c ^ 2 has positive c.

      theorem Fermat42.exists_odd_minimal {a b c : Int} (h : Fermat42 a b c) :
      Exists fun (a0 : Int) => Exists fun (b0 : Int) => Exists fun (c0 : Int) => And (Minimal a0 b0 c0) (Eq (HMod.hMod a0 2) 1)

      We can assume that a minimal solution to a ^ 4 + b ^ 4 = c ^ 2 has a odd.

      theorem Fermat42.exists_pos_odd_minimal {a b c : Int} (h : Fermat42 a b c) :
      Exists fun (a0 : Int) => Exists fun (b0 : Int) => Exists fun (c0 : Int) => And (Minimal a0 b0 c0) (And (Eq (HMod.hMod a0 2) 1) (LT.lt 0 c0))

      We can assume that a minimal solution to a ^ 4 + b ^ 4 = c ^ 2 has a odd and c positive.

      @[deprecated Int.isCoprime_of_sq_sum (since := "2025-01-23")]
      theorem Int.coprime_of_sq_sum {r s : Int} (h2 : IsCoprime s r) :

      Alias of Int.isCoprime_of_sq_sum.

      @[deprecated Int.isCoprime_of_sq_sum' (since := "2025-01-23")]
      theorem Int.coprime_of_sq_sum' {r s : Int} (h : IsCoprime r s) :

      Alias of Int.isCoprime_of_sq_sum'.

      theorem Fermat42.not_minimal {a b c : Int} (h : Minimal a b c) (ha2 : Eq (HMod.hMod a 2) 1) (hc : LT.lt 0 c) :
      theorem not_fermat_42 {a b c : Int} (ha : Ne a 0) (hb : Ne b 0) :

      Fermat's Last Theorem for $n=4$: if a b c : ℕ are all non-zero then a ^ 4 + b ^ 4 ≠ c ^ 4.

      To prove Fermat's Last Theorem, it suffices to prove it for odd prime exponents.