Fermat's Last Theorem for the case n = 4 #
There are no non-zero integers a
, b
and c
such that a ^ 4 + b ^ 4 = c ^ 4
.
theorem
Fermat42.exists_minimal
{a b c : ℤ}
(h : Fermat42 a b c)
:
∃ (a0 : ℤ) (b0 : ℤ) (c0 : ℤ), Fermat42.Minimal a0 b0 c0
if we have a solution to a ^ 4 + b ^ 4 = c ^ 2
then there must be a minimal one.
a minimal solution to a ^ 4 + b ^ 4 = c ^ 2
must have a
and b
coprime.
We can swap a
and b
in a minimal solution to a ^ 4 + b ^ 4 = c ^ 2
.
We can assume that a minimal solution to a ^ 4 + b ^ 4 = c ^ 2
has positive c
.
theorem
Fermat42.not_minimal
{a b c : ℤ}
(h : Fermat42.Minimal a b c)
(ha2 : a % 2 = 1)
(hc : 0 < c)
:
Fermat's Last Theorem for $n=4$: if a b c : ℕ
are all non-zero
then a ^ 4 + b ^ 4 ≠ c ^ 4
.
theorem
FermatLastTheorem.of_odd_primes
(hprimes : ∀ (p : ℕ), Nat.Prime p → Odd p → FermatLastTheoremFor p)
:
To prove Fermat's Last Theorem, it suffices to prove it for odd prime exponents.