Linearity of the L-series of f
as a function of f
#
We show that the LSeries
of f : ℕ → ℂ
is a linear function of f
(assuming convergence
of both L-series when adding two functions).
Addition #
theorem
LSeriesHasSum.add
{f g : ℕ → ℂ}
{s a b : ℂ}
(hf : LSeriesHasSum f s a)
(hg : LSeriesHasSum g s b)
:
LSeriesHasSum (f + g) s (a + b)
theorem
LSeriesSummable.add
{f g : ℕ → ℂ}
{s : ℂ}
(hf : LSeriesSummable f s)
(hg : LSeriesSummable g s)
:
LSeriesSummable (f + g) s
@[simp]
Negation #
theorem
LSeriesHasSum.neg
{f : ℕ → ℂ}
{s a : ℂ}
(hf : LSeriesHasSum f s a)
:
LSeriesHasSum (-f) s (-a)
@[simp]
Subtraction #
theorem
LSeriesHasSum.sub
{f g : ℕ → ℂ}
{s a b : ℂ}
(hf : LSeriesHasSum f s a)
(hg : LSeriesHasSum g s b)
:
LSeriesHasSum (f - g) s (a - b)
theorem
LSeriesSummable.sub
{f g : ℕ → ℂ}
{s : ℂ}
(hf : LSeriesSummable f s)
(hg : LSeriesSummable g s)
:
LSeriesSummable (f - g) s
@[simp]
Scalar multiplication #
theorem
LSeriesHasSum.smul
{f : ℕ → ℂ}
(c : ℂ)
{s a : ℂ}
(hf : LSeriesHasSum f s a)
:
LSeriesHasSum (c • f) s (c * a)
theorem
LSeriesSummable.smul
{f : ℕ → ℂ}
(c : ℂ)
{s : ℂ}
(hf : LSeriesSummable f s)
:
LSeriesSummable (c • f) s
theorem
LSeriesSummable.of_smul
{f : ℕ → ℂ}
{c s : ℂ}
(hc : c ≠ 0)
(hf : LSeriesSummable (c • f) s)
:
LSeriesSummable f s
theorem
LSeriesSummable.smul_iff
{f : ℕ → ℂ}
{c s : ℂ}
(hc : c ≠ 0)
:
LSeriesSummable (c • f) s ↔ LSeriesSummable f s
Sums #
theorem
LSeriesHasSum.sum
{ι : Type u_1}
{f : ι → ℕ → ℂ}
{S : Finset ι}
{s : ℂ}
{a : ι → ℂ}
(hf : ∀ i ∈ S, LSeriesHasSum (f i) s (a i))
:
LSeriesHasSum (∑ i ∈ S, f i) s (∑ i ∈ S, a i)
theorem
LSeriesSummable.sum
{ι : Type u_1}
{f : ι → ℕ → ℂ}
{S : Finset ι}
{s : ℂ}
(hf : ∀ i ∈ S, LSeriesSummable (f i) s)
:
LSeriesSummable (∑ i ∈ S, f i) s