Documentation

Mathlib.NumberTheory.LSeries.Linearity

Linearity of the L-series of f as a function of f #

We show that the LSeries of f : ℕ → ℂ is a linear function of f (assuming convergence of both L-series when adding two functions).

Addition #

theorem LSeries.term_add (f g : ) (s : ) :
term (f + g) s = term f s + term g s
theorem LSeries.term_add_apply (f g : ) (s : ) (n : ) :
term (f + g) s n = term f s n + term g s n
theorem LSeriesHasSum.add {f g : } {s a b : } (hf : LSeriesHasSum f s a) (hg : LSeriesHasSum g s b) :
LSeriesHasSum (f + g) s (a + b)
theorem LSeriesSummable.add {f g : } {s : } (hf : LSeriesSummable f s) (hg : LSeriesSummable g s) :
@[simp]
theorem LSeries_add {f g : } {s : } (hf : LSeriesSummable f s) (hg : LSeriesSummable g s) :
LSeries (f + g) s = LSeries f s + LSeries g s

Negation #

theorem LSeries.term_neg (f : ) (s : ) :
term (-f) s = -term f s
theorem LSeries.term_neg_apply (f : ) (s : ) (n : ) :
term (-f) s n = -term f s n
theorem LSeriesHasSum.neg {f : } {s a : } (hf : LSeriesHasSum f s a) :
LSeriesHasSum (-f) s (-a)
theorem LSeriesSummable.neg {f : } {s : } (hf : LSeriesSummable f s) :
@[simp]
@[simp]
theorem LSeries_neg (f : ) (s : ) :
LSeries (-f) s = -LSeries f s

Subtraction #

theorem LSeries.term_sub (f g : ) (s : ) :
term (f - g) s = term f s - term g s
theorem LSeries.term_sub_apply (f g : ) (s : ) (n : ) :
term (f - g) s n = term f s n - term g s n
theorem LSeriesHasSum.sub {f g : } {s a b : } (hf : LSeriesHasSum f s a) (hg : LSeriesHasSum g s b) :
LSeriesHasSum (f - g) s (a - b)
theorem LSeriesSummable.sub {f g : } {s : } (hf : LSeriesSummable f s) (hg : LSeriesSummable g s) :
@[simp]
theorem LSeries_sub {f g : } {s : } (hf : LSeriesSummable f s) (hg : LSeriesSummable g s) :
LSeries (f - g) s = LSeries f s - LSeries g s

Scalar multiplication #

theorem LSeries.term_smul (f : ) (c s : ) :
term (c f) s = c term f s
theorem LSeries.term_smul_apply (f : ) (c s : ) (n : ) :
term (c f) s n = c * term f s n
theorem LSeriesHasSum.smul {f : } (c : ) {s a : } (hf : LSeriesHasSum f s a) :
LSeriesHasSum (c f) s (c * a)
theorem LSeriesSummable.smul {f : } (c : ) {s : } (hf : LSeriesSummable f s) :
theorem LSeriesSummable.of_smul {f : } {c s : } (hc : c 0) (hf : LSeriesSummable (c f) s) :
theorem LSeriesSummable.smul_iff {f : } {c s : } (hc : c 0) :
@[simp]
theorem LSeries_smul (f : ) (c s : ) :
LSeries (c f) s = c * LSeries f s

Sums #

@[simp]
theorem LSeries.term_sum_apply {ι : Type u_1} (f : ι) (S : Finset ι) (s : ) (n : ) :
term (∑ iS, f i) s n = iS, term (f i) s n
theorem LSeries.term_sum {ι : Type u_1} (f : ι) (S : Finset ι) (s : ) :
term (∑ iS, f i) s = iS, term (f i) s
theorem LSeriesHasSum.sum {ι : Type u_1} {f : ι} {S : Finset ι} {s : } {a : ι} (hf : iS, LSeriesHasSum (f i) s (a i)) :
LSeriesHasSum (∑ iS, f i) s (∑ iS, a i)
theorem LSeriesSummable.sum {ι : Type u_1} {f : ι} {S : Finset ι} {s : } (hf : iS, LSeriesSummable (f i) s) :
LSeriesSummable (∑ iS, f i) s
@[simp]
theorem LSeries_sum {ι : Type u_1} {f : ι} {S : Finset ι} {s : } (hf : iS, LSeriesSummable (f i) s) :
LSeries (∑ iS, f i) s = iS, LSeries (f i) s