Documentation

Mathlib.NumberTheory.LegendreSymbol.Basic

Legendre symbol #

This file contains results about Legendre symbols.

We define the Legendre symbol $\Bigl(\frac{a}{p}\Bigr)$ as legendreSym p a. Note the order of arguments! The advantage of this form is that then legendreSym p is a multiplicative map.

The Legendre symbol is used to define the Jacobi symbol, jacobiSym a b, for integers a and (odd) natural numbers b, which extends the Legendre symbol.

Main results #

We also prove the supplementary laws that give conditions for when -1 is a square modulo a prime p: legendreSym.at_neg_one and ZMod.exists_sq_eq_neg_one_iff for -1.

See NumberTheory.LegendreSymbol.QuadraticReciprocity for the conditions when 2 and -2 are squares: legendreSym.at_two and ZMod.exists_sq_eq_two_iff for 2, legendreSym.at_neg_two and ZMod.exists_sq_eq_neg_two_iff for -2.

Tags #

quadratic residue, quadratic nonresidue, Legendre symbol

theorem ZMod.euler_criterion_units (p : ) [Fact (Nat.Prime p)] (x : (ZMod p)ˣ) :
(∃ (y : (ZMod p)ˣ), y ^ 2 = x) x ^ (p / 2) = 1

Euler's Criterion: A unit x of ZMod p is a square if and only if x ^ (p / 2) = 1.

theorem ZMod.euler_criterion (p : ) [Fact (Nat.Prime p)] {a : ZMod p} (ha : a 0) :
IsSquare a a ^ (p / 2) = 1

Euler's Criterion: a nonzero a : ZMod p is a square if and only if x ^ (p / 2) = 1.

theorem ZMod.pow_div_two_eq_neg_one_or_one (p : ) [Fact (Nat.Prime p)] {a : ZMod p} (ha : a 0) :
a ^ (p / 2) = 1 a ^ (p / 2) = -1

If a : ZMod p is nonzero, then a^(p/2) is either 1 or -1.

Definition of the Legendre symbol and basic properties #

def legendreSym (p : ) [Fact (Nat.Prime p)] (a : ) :

The Legendre symbol of a : ℤ and a prime p, legendreSym p a, is an integer defined as

  • 0 if a is 0 modulo p;
  • 1 if a is a nonzero square modulo p
  • -1 otherwise.

Note the order of the arguments! The advantage of the order chosen here is that legendreSym p is a multiplicative function ℤ → ℤ.

Equations
Instances For
    theorem legendreSym.eq_pow (p : ) [Fact (Nat.Prime p)] (a : ) :
    (legendreSym p a) = a ^ (p / 2)

    We have the congruence legendreSym p a ≡ a ^ (p / 2) mod p.

    theorem legendreSym.eq_one_or_neg_one (p : ) [Fact (Nat.Prime p)] {a : } (ha : a 0) :

    If p ∤ a, then legendreSym p a is 1 or -1.

    theorem legendreSym.eq_neg_one_iff_not_one (p : ) [Fact (Nat.Prime p)] {a : } (ha : a 0) :
    theorem legendreSym.eq_zero_iff (p : ) [Fact (Nat.Prime p)] (a : ) :
    legendreSym p a = 0 a = 0

    The Legendre symbol of p and a is zero iff p ∣ a.

    @[simp]
    theorem legendreSym.at_zero (p : ) [Fact (Nat.Prime p)] :
    @[simp]
    theorem legendreSym.at_one (p : ) [Fact (Nat.Prime p)] :
    theorem legendreSym.mul (p : ) [Fact (Nat.Prime p)] (a b : ) :

    The Legendre symbol is multiplicative in a for p fixed.

    The Legendre symbol is a homomorphism of monoids with zero.

    Equations
    Instances For
      @[simp]
      theorem legendreSym.sq_one (p : ) [Fact (Nat.Prime p)] {a : } (ha : a 0) :
      legendreSym p a ^ 2 = 1

      The square of the symbol is 1 if p ∤ a.

      theorem legendreSym.sq_one' (p : ) [Fact (Nat.Prime p)] {a : } (ha : a 0) :
      legendreSym p (a ^ 2) = 1

      The Legendre symbol of a^2 at p is 1 if p ∤ a.

      theorem legendreSym.mod (p : ) [Fact (Nat.Prime p)] (a : ) :
      legendreSym p a = legendreSym p (a % p)

      The Legendre symbol depends only on a mod p.

      theorem legendreSym.eq_one_iff (p : ) [Fact (Nat.Prime p)] {a : } (ha0 : a 0) :

      When p ∤ a, then legendreSym p a = 1 iff a is a square mod p.

      theorem legendreSym.eq_one_iff' (p : ) [Fact (Nat.Prime p)] {a : } (ha0 : a 0) :
      legendreSym p a = 1 IsSquare a
      theorem legendreSym.eq_neg_one_iff (p : ) [Fact (Nat.Prime p)] {a : } :

      legendreSym p a = -1 iff a is a nonsquare mod p.

      theorem legendreSym.card_sqrts (p : ) [Fact (Nat.Prime p)] (hp : p 2) (a : ) :
      {x : ZMod p | x ^ 2 = a}.toFinset.card = legendreSym p a + 1

      The number of square roots of a modulo p is determined by the Legendre symbol.

      Applications to binary quadratic forms #

      theorem legendreSym.eq_one_of_sq_sub_mul_sq_eq_zero {p : } [Fact (Nat.Prime p)] {a : } (ha : a 0) {x y : ZMod p} (hy : y 0) (hxy : x ^ 2 - a * y ^ 2 = 0) :

      The Legendre symbol legendreSym p a = 1 if there is a solution in ℤ/pℤ of the equation x^2 - a*y^2 = 0 with y ≠ 0.

      theorem legendreSym.eq_one_of_sq_sub_mul_sq_eq_zero' {p : } [Fact (Nat.Prime p)] {a : } (ha : a 0) {x y : ZMod p} (hx : x 0) (hxy : x ^ 2 - a * y ^ 2 = 0) :

      The Legendre symbol legendreSym p a = 1 if there is a solution in ℤ/pℤ of the equation x^2 - a*y^2 = 0 with x ≠ 0.

      theorem legendreSym.eq_zero_mod_of_eq_neg_one {p : } [Fact (Nat.Prime p)] {a : } (h : legendreSym p a = -1) {x y : ZMod p} (hxy : x ^ 2 - a * y ^ 2 = 0) :
      x = 0 y = 0

      If legendreSym p a = -1, then the only solution of x^2 - a*y^2 = 0 in ℤ/pℤ is the trivial one.

      theorem legendreSym.prime_dvd_of_eq_neg_one {p : } [Fact (Nat.Prime p)] {a : } (h : legendreSym p a = -1) {x y : } (hxy : p x ^ 2 - a * y ^ 2) :
      p x p y

      If legendreSym p a = -1 and p divides x^2 - a*y^2, then p must divide x and y.

      The value of the Legendre symbol at -1 #

      See jacobiSym.at_neg_one for the corresponding statement for the Jacobi symbol.

      theorem legendreSym.at_neg_one {p : } [Fact (Nat.Prime p)] (hp : p 2) :
      legendreSym p (-1) = ZMod.χ₄ p

      legendreSym p (-1) is given by χ₄ p.

      -1 is a square in ZMod p iff p is not congruent to 3 mod 4.

      theorem ZMod.mod_four_ne_three_of_sq_eq_neg_one {p : } [Fact (Nat.Prime p)] {y : ZMod p} (hy : y ^ 2 = -1) :
      p % 4 3
      theorem ZMod.mod_four_ne_three_of_sq_eq_neg_sq' {p : } [Fact (Nat.Prime p)] {x y : ZMod p} (hy : y 0) (hxy : x ^ 2 = -y ^ 2) :
      p % 4 3

      If two nonzero squares are negatives of each other in ZMod p, then p % 4 ≠ 3.

      theorem ZMod.mod_four_ne_three_of_sq_eq_neg_sq {p : } [Fact (Nat.Prime p)] {x y : ZMod p} (hx : x 0) (hxy : x ^ 2 = -y ^ 2) :
      p % 4 3