Documentation

Mathlib.NumberTheory.Transcendental.Liouville.Residual

Density of Liouville numbers #

In this file we prove that the set of Liouville numbers form a dense set. We also prove a similar statement about irrational numbers.

theorem setOf_liouville_eq_iInter_iUnion :
{x : | Liouville x} = ⋂ (n : ), ⋃ (a : ), ⋃ (b : ), ⋃ (_ : 1 < b), Metric.ball (a / b) (1 / b ^ n) \ {a / b}
@[deprecated IsGδ.setOf_liouville]

Alias of IsGδ.setOf_liouville.

theorem setOf_liouville_eq_irrational_inter_iInter_iUnion :
{x : | Liouville x} = {x : | Irrational x} ⋂ (n : ), ⋃ (a : ), ⋃ (b : ), ⋃ (_ : 1 < b), Metric.ball (a / b) (1 / b ^ n)

The set of Liouville numbers is a residual set.

theorem dense_liouville :
Dense {x : | Liouville x}

The set of Liouville numbers in dense.