Documentation

Mathlib.NumberTheory.TsumDivsorsAntidiagonal

Lemmas on infinite sums over the antidiagonal of the divisors function #

This file contains lemmas about the antidiagonal of the divisors function. It defines the map from Nat.divisorsAntidiagonal n to ℕ+ × ℕ+ given by sending n = a * b to (a, b).

We then prove some identities about the infinite sums over this antidiagonal, such as ∑' n : ℕ+, n ^ k * r ^ n / (1 - r ^ n) = ∑' n : ℕ+, σ k n * r ^ n which are used for Eisenstein series and their q-expansions. This is also a special case of Lambert series.

The map from Nat.divisorsAntidiagonal n to ℕ+ × ℕ+ given by sending n = a * b to (a, b).

Equations
Instances For

    The equivalence from the union over n of Nat.divisorsAntidiagonal n to ℕ+ × ℕ+ given by sending n = a * b to (a, b).

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem summable_norm_pow_mul_geometric_div_one_sub {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] [CompleteSpace 𝕜] (k : ) {r : 𝕜} (hr : r < 1) :
      Summable fun (n : ) => n ^ k * r ^ n / (1 - r ^ n)
      theorem summable_prod_mul_pow {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] [CompleteSpace 𝕜] [NormSMulClass 𝕜] (k : ) {r : 𝕜} (hr : r < 1) :
      Summable fun (c : ℕ+ × ℕ+) => c.2 ^ k * r ^ (c.1 * c.2)
      theorem tsum_prod_pow_eq_tsum_sigma {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] [CompleteSpace 𝕜] [NormSMulClass 𝕜] (k : ) {r : 𝕜} (hr : r < 1) :
      ∑' (d : ℕ+) (c : ℕ+), c ^ k * r ^ (d * c) = ∑' (e : ℕ+), ((ArithmeticFunction.sigma k) e) * r ^ e
      theorem tsum_pow_div_one_sub_eq_tsum_sigma {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] [CompleteSpace 𝕜] [NormSMulClass 𝕜] {r : 𝕜} (hr : r < 1) (k : ) :
      ∑' (n : ℕ+), n ^ k * r ^ n / (1 - r ^ n) = ∑' (n : ℕ+), ((ArithmeticFunction.sigma k) n) * r ^ n