The category of Heyting algebras.
Equations
Instances For
Equations
- HeytAlg.instCoeSortType = CategoryTheory.Bundled.coeSort
Equations
- X.instHeytingAlgebraα = X.str
Equations
- HeytAlg.instInhabited = { default := HeytAlg.of PUnit.{?u.3 + 1} }
Equations
- One or more equations did not get rendered due to their size.
Equations
- HeytAlg.instConcreteCategory = id inferInstance
instance
HeytAlg.instHeytingHomClassHomαHeytingAlgebra
{X Y : HeytAlg}
:
HeytingHomClass (X ⟶ Y) ↑X ↑Y
Equations
- ⋯ = ⋯
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
HeytAlg.hasForgetToLat_forget₂_map_toLatticeHom_toSupHom_toFun
{X Y : HeytAlg}
(f : X ⟶ Y)
(a : ↑X)
:
(CategoryTheory.HasForget₂.forget₂.map f).toSupHom a = f a
@[simp]
theorem
HeytAlg.hasForgetToLat_forget₂_obj
(X : HeytAlg)
:
CategoryTheory.HasForget₂.forget₂.obj X = BddDistLat.of ↑X
Constructs an isomorphism of Heyting algebras from an order isomorphism between them.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
HeytAlg.Iso.mk_inv_toFun
{α β : HeytAlg}
(e : ↑α ≃o ↑β)
(a : ↑β)
:
(HeytAlg.Iso.mk e).inv a = e.symm a
@[simp]
theorem
HeytAlg.Iso.mk_hom_toFun
{α β : HeytAlg}
(e : ↑α ≃o ↑β)
(a : ↑α)
:
(HeytAlg.Iso.mk e).hom a = e a