Documentation

Mathlib.Order.Category.HeytAlg

The category of Heyting algebras #

This file defines HeytAlg, the category of Heyting algebras.

def HeytAlg :
Type (u_1 + 1)

The category of Heyting algebras.

Equations
Instances For
    Equations
    Equations
    • X.instHeytingAlgebraα = X.str
    def HeytAlg.of (α : Type u_1) [HeytingAlgebra α] :

    Construct a bundled HeytAlg from a HeytingAlgebra.

    Equations
    Instances For
      @[simp]
      theorem HeytAlg.coe_of (α : Type u_1) [HeytingAlgebra α] :
      (HeytAlg.of α) = α
      Equations
      • One or more equations did not get rendered due to their size.
      instance HeytAlg.instFunLikeHomαHeytingAlgebra {X Y : HeytAlg} :
      FunLike (X Y) X Y
      Equations
      • HeytAlg.instFunLikeHomαHeytingAlgebra = HeytingHom.instFunLike
      Equations
      • One or more equations did not get rendered due to their size.
      @[simp]
      theorem HeytAlg.hasForgetToLat_forget₂_map_toLatticeHom_toSupHom_toFun {X Y : HeytAlg} (f : X Y) (a : X) :
      (CategoryTheory.HasForget₂.forget₂.map f).toSupHom a = f a
      @[simp]
      theorem HeytAlg.hasForgetToLat_forget₂_obj (X : HeytAlg) :
      CategoryTheory.HasForget₂.forget₂.obj X = BddDistLat.of X
      def HeytAlg.Iso.mk {α β : HeytAlg} (e : α ≃o β) :
      α β

      Constructs an isomorphism of Heyting algebras from an order isomorphism between them.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem HeytAlg.Iso.mk_inv_toFun {α β : HeytAlg} (e : α ≃o β) (a : β) :
        (HeytAlg.Iso.mk e).inv a = e.symm a
        @[simp]
        theorem HeytAlg.Iso.mk_hom_toFun {α β : HeytAlg} (e : α ≃o β) (a : α) :
        (HeytAlg.Iso.mk e).hom a = e a