Documentation
Mathlib
.
Order
.
Circular
.
ZMod
Search
return to top
source
Imports
Init
Mathlib.Order.Circular
Mathlib.Data.ZMod.Defs
Mathlib.Order.Fin.Basic
Imported by
instCircularOrderInt
Int
.
btw_iff
Int
.
sbtw_iff
instCircularOrderFin
Fin
.
btw_iff
Fin
.
sbtw_iff
instCircularOrderZMod
The circular order on
ZMod
n
#
This file defines the circular order on
ZMod
n
.
source
instance
instCircularOrderInt
:
CircularOrder
ℤ
Equations
instCircularOrderInt
=
LinearOrder.toCircularOrder
ℤ
source
theorem
Int
.
btw_iff
{
a
b
c
:
ℤ
}
:
btw
a
b
c
↔
a
≤
b
∧
b
≤
c
∨
b
≤
c
∧
c
≤
a
∨
c
≤
a
∧
a
≤
b
source
theorem
Int
.
sbtw_iff
{
a
b
c
:
ℤ
}
:
sbtw
a
b
c
↔
a
<
b
∧
b
<
c
∨
b
<
c
∧
c
<
a
∨
c
<
a
∧
a
<
b
source
instance
instCircularOrderFin
(
n
:
ℕ
)
:
CircularOrder
(
Fin
n
)
Equations
instCircularOrderFin
n
=
LinearOrder.toCircularOrder
(
Fin
n
)
source
theorem
Fin
.
btw_iff
{
n
:
ℕ
}
{
a
b
c
:
Fin
n
}
:
btw
a
b
c
↔
a
≤
b
∧
b
≤
c
∨
b
≤
c
∧
c
≤
a
∨
c
≤
a
∧
a
≤
b
source
theorem
Fin
.
sbtw_iff
{
n
:
ℕ
}
{
a
b
c
:
Fin
n
}
:
sbtw
a
b
c
↔
a
<
b
∧
b
<
c
∨
b
<
c
∧
c
<
a
∨
c
<
a
∧
a
<
b
source
instance
instCircularOrderZMod
(
n
:
ℕ
)
:
CircularOrder
(
ZMod
n
)
Equations
instCircularOrderZMod
0
=
inferInstanceAs
(
CircularOrder
ℤ
)
instCircularOrderZMod
n
.
succ
=
inferInstanceAs
(
CircularOrder
(
Fin
(
n
+
1
))
)