Complete lattices and groups #
theorem
iSup_mul_le
{α : Type u_1}
{ι : Sort u_2}
[CompleteLattice α]
[Mul α]
[MulLeftMono α]
[MulRightMono α]
(u v : ι → α)
:
theorem
iSup_add_le
{α : Type u_1}
{ι : Sort u_2}
[CompleteLattice α]
[Add α]
[AddLeftMono α]
[AddRightMono α]
(u v : ι → α)
:
theorem
le_iInf_mul
{α : Type u_1}
{ι : Sort u_2}
[CompleteLattice α]
[Mul α]
[MulLeftMono α]
[MulRightMono α]
(u v : ι → α)
:
theorem
le_iInf_add
{α : Type u_1}
{ι : Sort u_2}
[CompleteLattice α]
[Add α]
[AddLeftMono α]
[AddRightMono α]
(u v : ι → α)
:
theorem
iSup₂_mul_le
{α : Type u_1}
{ι : Sort u_2}
{κ : ι → Sort u_3}
[CompleteLattice α]
[Mul α]
[MulLeftMono α]
[MulRightMono α]
(u v : (i : ι) → κ i → α)
:
theorem
iSup₂_add_le
{α : Type u_1}
{ι : Sort u_2}
{κ : ι → Sort u_3}
[CompleteLattice α]
[Add α]
[AddLeftMono α]
[AddRightMono α]
(u v : (i : ι) → κ i → α)
:
theorem
le_iInf₂_mul
{α : Type u_1}
{ι : Sort u_2}
{κ : ι → Sort u_3}
[CompleteLattice α]
[Mul α]
[MulLeftMono α]
[MulRightMono α]
(u v : (i : ι) → κ i → α)
:
theorem
le_iInf₂_add
{α : Type u_1}
{ι : Sort u_2}
{κ : ι → Sort u_3}
[CompleteLattice α]
[Add α]
[AddLeftMono α]
[AddRightMono α]
(u v : (i : ι) → κ i → α)
: