Limsup and liminf of reals #
This file compiles filter-related results about ℝ
, ℝ≥0
and ℝ≥0∞
.
@[simp]
theorem
Real.limsSup_of_not_isCobounded
{f : Filter ℝ}
(hf : ¬Filter.IsCobounded (fun (x1 x2 : ℝ) => x1 ≤ x2) f)
:
@[simp]
theorem
Real.limsSup_of_not_isBounded
{f : Filter ℝ}
(hf : ¬Filter.IsBounded (fun (x1 x2 : ℝ) => x1 ≤ x2) f)
:
@[simp]
theorem
Real.limsInf_of_not_isCobounded
{f : Filter ℝ}
(hf : ¬Filter.IsCobounded (fun (x1 x2 : ℝ) => x1 ≥ x2) f)
:
@[simp]
theorem
Real.limsInf_of_not_isBounded
{f : Filter ℝ}
(hf : ¬Filter.IsBounded (fun (x1 x2 : ℝ) => x1 ≥ x2) f)
:
@[simp]
theorem
Real.limsup_of_not_isCoboundedUnder
{ι : Type u_1}
{f : Filter ι}
{u : ι → ℝ}
(hf : ¬Filter.IsCoboundedUnder (fun (x1 x2 : ℝ) => x1 ≤ x2) f u)
:
@[simp]
theorem
Real.limsup_of_not_isBoundedUnder
{ι : Type u_1}
{f : Filter ι}
{u : ι → ℝ}
(hf : ¬Filter.IsBoundedUnder (fun (x1 x2 : ℝ) => x1 ≤ x2) f u)
:
@[simp]
theorem
Real.liminf_of_not_isCoboundedUnder
{ι : Type u_1}
{f : Filter ι}
{u : ι → ℝ}
(hf : ¬Filter.IsCoboundedUnder (fun (x1 x2 : ℝ) => x1 ≥ x2) f u)
:
@[simp]
theorem
Real.liminf_of_not_isBoundedUnder
{ι : Type u_1}
{f : Filter ι}
{u : ι → ℝ}
(hf : ¬Filter.IsBoundedUnder (fun (x1 x2 : ℝ) => x1 ≥ x2) f u)
:
@[simp]
theorem
NNReal.isBoundedUnder_le_toReal
{ι : Type u_1}
{f : Filter ι}
{u : ι → NNReal}
:
(Filter.IsBoundedUnder (fun (x1 x2 : ℝ) => x1 ≤ x2) f fun (i : ι) => ↑(u i)) ↔ Filter.IsBoundedUnder (fun (x1 x2 : NNReal) => x1 ≤ x2) f u
@[simp]
theorem
NNReal.isBoundedUnder_ge_toReal
{ι : Type u_1}
{f : Filter ι}
{u : ι → NNReal}
:
(Filter.IsBoundedUnder (fun (x1 x2 : ℝ) => x1 ≥ x2) f fun (i : ι) => ↑(u i)) ↔ Filter.IsBoundedUnder (fun (x1 x2 : NNReal) => x1 ≥ x2) f u
@[simp]
theorem
NNReal.isCoboundedUnder_le_toReal
{ι : Type u_1}
{f : Filter ι}
{u : ι → NNReal}
[f.NeBot]
:
(Filter.IsCoboundedUnder (fun (x1 x2 : ℝ) => x1 ≤ x2) f fun (i : ι) => ↑(u i)) ↔ Filter.IsCoboundedUnder (fun (x1 x2 : NNReal) => x1 ≤ x2) f u
@[simp]
theorem
NNReal.isCoboundedUnder_ge_toReal
{ι : Type u_1}
{f : Filter ι}
{u : ι → NNReal}
:
(Filter.IsCoboundedUnder (fun (x1 x2 : ℝ) => x1 ≥ x2) f fun (i : ι) => ↑(u i)) ↔ Filter.IsCoboundedUnder (fun (x1 x2 : NNReal) => x1 ≥ x2) f u
@[simp]
theorem
NNReal.limsSup_of_not_isBounded
{f : Filter NNReal}
(hf : ¬Filter.IsBounded (fun (x1 x2 : NNReal) => x1 ≤ x2) f)
:
@[simp]
theorem
NNReal.limsInf_of_not_isCobounded
{f : Filter NNReal}
(hf : ¬Filter.IsCobounded (fun (x1 x2 : NNReal) => x1 ≥ x2) f)
:
@[simp]
theorem
NNReal.limsup_of_not_isBoundedUnder
{ι : Type u_1}
{f : Filter ι}
{u : ι → NNReal}
(hf : ¬Filter.IsBoundedUnder (fun (x1 x2 : NNReal) => x1 ≤ x2) f u)
:
@[simp]
theorem
NNReal.liminf_of_not_isCoboundedUnder
{ι : Type u_1}
{f : Filter ι}
{u : ι → NNReal}
(hf : ¬Filter.IsCoboundedUnder (fun (x1 x2 : NNReal) => x1 ≥ x2) f u)
:
@[simp]
@[simp]
theorem
ENNReal.eventually_le_limsup
{α : Type u_1}
{f : Filter α}
[CountableInterFilter f]
(u : α → ENNReal)
:
∀ᶠ (y : α) in f, u y ≤ Filter.limsup u f
theorem
ENNReal.limsup_eq_zero_iff
{α : Type u_1}
{f : Filter α}
[CountableInterFilter f]
{u : α → ENNReal}
:
theorem
ENNReal.limsup_const_mul
{α : Type u_1}
{f : Filter α}
[CountableInterFilter f]
{u : α → ENNReal}
{a : ENNReal}
:
theorem
ENNReal.limsup_mul_le
{α : Type u_1}
{f : Filter α}
[CountableInterFilter f]
(u v : α → ENNReal)
:
See also limsup_mul_le'
theorem
ENNReal.limsup_add_le
{α : Type u_1}
{f : Filter α}
[CountableInterFilter f]
(u v : α → ENNReal)
:
theorem
ENNReal.limsup_liminf_le_liminf_limsup
{α : Type u_1}
{β : Type u_2}
[Countable β]
{f : Filter α}
[CountableInterFilter f]
{g : Filter β}
(u : α → β → ENNReal)
:
Filter.limsup (fun (a : α) => Filter.liminf (fun (b : β) => u a b) g) f ≤ Filter.liminf (fun (b : β) => Filter.limsup (fun (a : α) => u a b) f) g