Order properties of extended non-negative reals #
This file compiles filter-related results about ℝ≥0∞
(see Data/Real/ENNReal.lean).
theorem
ENNReal.eventually_le_limsup
{α : Type u_1}
{f : Filter α}
[CountableInterFilter f]
(u : α → ENNReal)
:
∀ᶠ (y : α) in f, u y ≤ Filter.limsup u f
theorem
ENNReal.limsup_eq_zero_iff
{α : Type u_1}
{f : Filter α}
[CountableInterFilter f]
{u : α → ENNReal}
:
Filter.limsup u f = 0 ↔ u =ᶠ[f] 0
theorem
ENNReal.limsup_const_mul_of_ne_top
{α : Type u_1}
{f : Filter α}
{u : α → ENNReal}
{a : ENNReal}
(ha_top : a ≠ ⊤)
:
Filter.limsup (fun (x : α) => a * u x) f = a * Filter.limsup u f
theorem
ENNReal.limsup_const_mul
{α : Type u_1}
{f : Filter α}
[CountableInterFilter f]
{u : α → ENNReal}
{a : ENNReal}
:
Filter.limsup (fun (x : α) => a * u x) f = a * Filter.limsup u f
theorem
ENNReal.limsup_mul_le
{α : Type u_1}
{f : Filter α}
[CountableInterFilter f]
(u v : α → ENNReal)
:
Filter.limsup (u * v) f ≤ Filter.limsup u f * Filter.limsup v f
See also limsup_mul_le'
.
theorem
ENNReal.limsup_add_le
{α : Type u_1}
{f : Filter α}
[CountableInterFilter f]
(u v : α → ENNReal)
:
Filter.limsup (u + v) f ≤ Filter.limsup u f + Filter.limsup v f
theorem
ENNReal.limsup_liminf_le_liminf_limsup
{α : Type u_1}
{β : Type u_2}
[Countable β]
{f : Filter α}
[CountableInterFilter f]
{g : Filter β}
(u : α → β → ENNReal)
:
Filter.limsup (fun (a : α) => Filter.liminf (fun (b : β) => u a b) g) f ≤ Filter.liminf (fun (b : β) => Filter.limsup (fun (a : α) => u a b) f) g