Order properties of extended non-negative reals #
This file compiles filter-related results about ℝ≥0∞
(see Data/Real/ENNReal.lean).
theorem
ENNReal.eventually_le_limsup
{α : Type u_1}
{f : Filter α}
[CountableInterFilter f]
(u : α → ENNReal)
:
∀ᶠ (y : α) in f, u y ≤ Filter.limsup u f
theorem
ENNReal.limsup_eq_zero_iff
{α : Type u_1}
{f : Filter α}
[CountableInterFilter f]
{u : α → ENNReal}
:
theorem
ENNReal.limsup_const_mul
{α : Type u_1}
{f : Filter α}
[CountableInterFilter f]
{u : α → ENNReal}
{a : ENNReal}
:
theorem
ENNReal.limsup_mul_le
{α : Type u_1}
{f : Filter α}
[CountableInterFilter f]
(u v : α → ENNReal)
:
See also limsup_mul_le'
theorem
ENNReal.limsup_add_le
{α : Type u_1}
{f : Filter α}
[CountableInterFilter f]
(u v : α → ENNReal)
:
theorem
ENNReal.limsup_liminf_le_liminf_limsup
{α : Type u_1}
{β : Type u_2}
[Countable β]
{f : Filter α}
[CountableInterFilter f]
{g : Filter β}
(u : α → β → ENNReal)
:
Filter.limsup (fun (a : α) => Filter.liminf (fun (b : β) => u a b) g) f ≤ Filter.liminf (fun (b : β) => Filter.limsup (fun (a : α) => u a b) f) g