Results about identically distributed random variables and independence #
Main statements #
IdentDistrib.prodMk: ifXandYare independent random variables onΩ,ZandWare independent random variables onΩ', such thatXandZare identically distributed andYandWare identically distributed, then the pairs(X, Y)and(Z, W)are identically distributed.IdentDistrib.pi: if(X i)and(Y i)are families of independent random variables indexed by a countable typeι, such that for eachi,X iandY iare identically distributed, then the productsXandYare identically distributed.
theorem
ProbabilityTheory.IdentDistrib.prodMk
{Ω : Type u_1}
{Ω' : Type u_2}
{E : Type u_4}
{F : Type u_5}
{mΩ : MeasurableSpace Ω}
{mΩ' : MeasurableSpace Ω'}
{mE : MeasurableSpace E}
{mF : MeasurableSpace F}
{μ : MeasureTheory.Measure Ω}
{ν : MeasureTheory.Measure Ω'}
[MeasureTheory.IsFiniteMeasure μ]
{X : Ω → E}
{Y : Ω → F}
{Z : Ω' → E}
{W : Ω' → F}
(hXZ : IdentDistrib X Z μ ν)
(hYW : IdentDistrib Y W μ ν)
(hXY : IndepFun X Y μ)
(hZW : IndepFun Z W ν)
:
If X and Y are independent random variables on Ω, Z and W are independent random
variables on Ω', such that X and Z are identically distributed and Y and W are identically
distributed, then the pairs (X, Y) and (Z, W) are identically distributed.
theorem
ProbabilityTheory.IdentDistrib.pi
{Ω : Type u_1}
{Ω' : Type u_2}
{ι : Type u_3}
{mΩ : MeasurableSpace Ω}
{mΩ' : MeasurableSpace Ω'}
{μ : MeasureTheory.Measure Ω}
{ν : MeasureTheory.Measure Ω'}
[Countable ι]
{E : ι → Type u_6}
{mE : (i : ι) → MeasurableSpace (E i)}
{X : (i : ι) → Ω → E i}
{Y : (i : ι) → Ω' → E i}
(h : ∀ (i : ι), IdentDistrib (X i) (Y i) μ ν)
(hX_ind : iIndepFun X μ)
(hY_ind : iIndepFun Y ν)
:
IdentDistrib (fun (ω : Ω) (x : ι) => X x ω) (fun (ω : Ω') (x : ι) => Y x ω) μ ν
If (X i) and (Y i) are families of independent random variables indexed by a countable
type ι, such that for each i, X i and Y i are identically distributed, then the products
X and Y are identically distributed.