Documentation

Mathlib.Probability.ProbabilityMassFunction.Monad

Monad Operations for Probability Mass Functions #

This file constructs two operations on PMF that give it a monad structure. pure a is the distribution where a single value a has probability 1. bind pa pb : PMF β is the distribution given by sampling a : α from pa : PMF α, and then sampling from pb a : PMF β to get a final result b : β.

bindOnSupport generalizes bind to allow binding to a partial function, so that the second argument only needs to be defined on the support of the first argument.

def PMF.pure {α : Type u_1} (a : α) :
PMF α

The pure PMF is the PMF where all the mass lies in one point. The value of pure a is 1 at a and 0 elsewhere.

Equations
  • PMF.pure a = { val := fun (a' : α) => if a' = a then 1 else 0, property := }
Instances For
    @[simp]
    theorem PMF.pure_apply {α : Type u_1} (a : α) (a' : α) :
    (PMF.pure a) a' = if a' = a then 1 else 0
    @[simp]
    theorem PMF.support_pure {α : Type u_1} (a : α) :
    theorem PMF.mem_support_pure_iff {α : Type u_1} (a : α) (a' : α) :
    theorem PMF.pure_apply_self {α : Type u_1} (a : α) :
    (PMF.pure a) a = 1
    theorem PMF.pure_apply_of_ne {α : Type u_1} (a : α) (a' : α) (h : a' a) :
    (PMF.pure a) a' = 0
    instance PMF.instInhabitedPMF {α : Type u_1} [Inhabited α] :
    Equations
    • PMF.instInhabitedPMF = { default := PMF.pure default }
    @[simp]
    theorem PMF.toOuterMeasure_pure_apply {α : Type u_1} (a : α) (s : Set α) :
    (PMF.toOuterMeasure (PMF.pure a)) s = if a s then 1 else 0
    @[simp]
    theorem PMF.toMeasure_pure_apply {α : Type u_1} (a : α) (s : Set α) [MeasurableSpace α] (hs : MeasurableSet s) :
    (PMF.toMeasure (PMF.pure a)) s = if a s then 1 else 0

    The measure of a set under pure a is 1 for sets containing a and 0 otherwise.

    def PMF.bind {α : Type u_1} {β : Type u_2} (p : PMF α) (f : αPMF β) :
    PMF β

    The monadic bind operation for PMF.

    Equations
    • PMF.bind p f = { val := fun (b : β) => ∑' (a : α), p a * (f a) b, property := }
    Instances For
      @[simp]
      theorem PMF.bind_apply {α : Type u_1} {β : Type u_2} (p : PMF α) (f : αPMF β) (b : β) :
      (PMF.bind p f) b = ∑' (a : α), p a * (f a) b
      @[simp]
      theorem PMF.support_bind {α : Type u_1} {β : Type u_2} (p : PMF α) (f : αPMF β) :
      PMF.support (PMF.bind p f) = ⋃ a ∈ PMF.support p, PMF.support (f a)
      theorem PMF.mem_support_bind_iff {α : Type u_1} {β : Type u_2} (p : PMF α) (f : αPMF β) (b : β) :
      b PMF.support (PMF.bind p f) ∃ a ∈ PMF.support p, b PMF.support (f a)
      @[simp]
      theorem PMF.pure_bind {α : Type u_1} {β : Type u_2} (a : α) (f : αPMF β) :
      PMF.bind (PMF.pure a) f = f a
      @[simp]
      theorem PMF.bind_pure {α : Type u_1} (p : PMF α) :
      PMF.bind p PMF.pure = p
      @[simp]
      theorem PMF.bind_const {α : Type u_1} {β : Type u_2} (p : PMF α) (q : PMF β) :
      (PMF.bind p fun (x : α) => q) = q
      @[simp]
      theorem PMF.bind_bind {α : Type u_1} {β : Type u_2} {γ : Type u_3} (p : PMF α) (f : αPMF β) (g : βPMF γ) :
      PMF.bind (PMF.bind p f) g = PMF.bind p fun (a : α) => PMF.bind (f a) g
      theorem PMF.bind_comm {α : Type u_1} {β : Type u_2} {γ : Type u_3} (p : PMF α) (q : PMF β) (f : αβPMF γ) :
      (PMF.bind p fun (a : α) => PMF.bind q (f a)) = PMF.bind q fun (b : β) => PMF.bind p fun (a : α) => f a b
      @[simp]
      theorem PMF.toOuterMeasure_bind_apply {α : Type u_1} {β : Type u_2} (p : PMF α) (f : αPMF β) (s : Set β) :
      (PMF.toOuterMeasure (PMF.bind p f)) s = ∑' (a : α), p a * (PMF.toOuterMeasure (f a)) s
      @[simp]
      theorem PMF.toMeasure_bind_apply {α : Type u_1} {β : Type u_2} (p : PMF α) (f : αPMF β) (s : Set β) [MeasurableSpace β] (hs : MeasurableSet s) :
      (PMF.toMeasure (PMF.bind p f)) s = ∑' (a : α), p a * (PMF.toMeasure (f a)) s

      The measure of a set under p.bind f is the sum over a : α of the probability of a under p times the measure of the set under f a.

      def PMF.bindOnSupport {α : Type u_1} {β : Type u_2} (p : PMF α) (f : (a : α) → a PMF.support pPMF β) :
      PMF β

      Generalized version of bind allowing f to only be defined on the support of p. p.bind f is equivalent to p.bindOnSupport (fun a _ ↦ f a), see bindOnSupport_eq_bind.

      Equations
      • PMF.bindOnSupport p f = { val := fun (b : β) => ∑' (a : α), p a * if h : p a = 0 then 0 else (f a h) b, property := }
      Instances For
        @[simp]
        theorem PMF.bindOnSupport_apply {α : Type u_1} {β : Type u_2} {p : PMF α} (f : (a : α) → a PMF.support pPMF β) (b : β) :
        (PMF.bindOnSupport p f) b = ∑' (a : α), p a * if h : p a = 0 then 0 else (f a h) b
        @[simp]
        theorem PMF.support_bindOnSupport {α : Type u_1} {β : Type u_2} {p : PMF α} (f : (a : α) → a PMF.support pPMF β) :
        PMF.support (PMF.bindOnSupport p f) = ⋃ (a : α), ⋃ (h : a PMF.support p), PMF.support (f a h)
        theorem PMF.mem_support_bindOnSupport_iff {α : Type u_1} {β : Type u_2} {p : PMF α} (f : (a : α) → a PMF.support pPMF β) (b : β) :
        b PMF.support (PMF.bindOnSupport p f) ∃ (a : α) (h : a PMF.support p), b PMF.support (f a h)
        @[simp]
        theorem PMF.bindOnSupport_eq_bind {α : Type u_1} {β : Type u_2} (p : PMF α) (f : αPMF β) :
        (PMF.bindOnSupport p fun (a : α) (x : a PMF.support p) => f a) = PMF.bind p f

        bindOnSupport reduces to bind if f doesn't depend on the additional hypothesis.

        theorem PMF.bindOnSupport_eq_zero_iff {α : Type u_1} {β : Type u_2} {p : PMF α} (f : (a : α) → a PMF.support pPMF β) (b : β) :
        (PMF.bindOnSupport p f) b = 0 ∀ (a : α) (ha : p a 0), (f a ha) b = 0
        @[simp]
        theorem PMF.pure_bindOnSupport {α : Type u_1} {β : Type u_2} (a : α) (f : (a' : α) → a' PMF.support (PMF.pure a)PMF β) :
        theorem PMF.bindOnSupport_pure {α : Type u_1} (p : PMF α) :
        (PMF.bindOnSupport p fun (a : α) (x : a PMF.support p) => PMF.pure a) = p
        @[simp]
        theorem PMF.bindOnSupport_bindOnSupport {α : Type u_1} {β : Type u_2} {γ : Type u_3} (p : PMF α) (f : (a : α) → a PMF.support pPMF β) (g : (b : β) → b PMF.support (PMF.bindOnSupport p f)PMF γ) :
        PMF.bindOnSupport (PMF.bindOnSupport p f) g = PMF.bindOnSupport p fun (a : α) (ha : a PMF.support p) => PMF.bindOnSupport (f a ha) fun (b : β) (hb : b PMF.support (f a ha)) => g b
        theorem PMF.bindOnSupport_comm {α : Type u_1} {β : Type u_2} {γ : Type u_3} (p : PMF α) (q : PMF β) (f : (a : α) → a PMF.support p(b : β) → b PMF.support qPMF γ) :
        (PMF.bindOnSupport p fun (a : α) (ha : a PMF.support p) => PMF.bindOnSupport q (f a ha)) = PMF.bindOnSupport q fun (b : β) (hb : b PMF.support q) => PMF.bindOnSupport p fun (a : α) (ha : a PMF.support p) => f a ha b hb
        @[simp]
        theorem PMF.toOuterMeasure_bindOnSupport_apply {α : Type u_1} {β : Type u_2} {p : PMF α} (f : (a : α) → a PMF.support pPMF β) (s : Set β) :
        (PMF.toOuterMeasure (PMF.bindOnSupport p f)) s = ∑' (a : α), p a * if h : p a = 0 then 0 else (PMF.toOuterMeasure (f a h)) s
        @[simp]
        theorem PMF.toMeasure_bindOnSupport_apply {α : Type u_1} {β : Type u_2} {p : PMF α} (f : (a : α) → a PMF.support pPMF β) (s : Set β) [MeasurableSpace β] (hs : MeasurableSet s) :
        (PMF.toMeasure (PMF.bindOnSupport p f)) s = ∑' (a : α), p a * if h : p a = 0 then 0 else (PMF.toMeasure (f a h)) s

        The measure of a set under p.bindOnSupport f is the sum over a : α of the probability of a under p times the measure of the set under f a _. The additional if statement is needed since f is only a partial function.