Documentation

Mathlib.RepresentationTheory.FdRep

FdRep k G is the category of finite dimensional k-linear representations of G. #

If V : FdRep k G, there is a coercion that allows you to treat V as a type, and this type comes equipped with Module k V and FiniteDimensional k V instances. Also V.ρ gives the homomorphism G →* (V →ₗ[k] V).

Conversely, given a homomorphism ρ : G →* (V →ₗ[k] V), you can construct the bundled representation as Rep.of ρ.

We verify that FdRep k G is a k-linear monoidal category, and rigid when G is a group.

FdRep k G has all finite limits.

TODO #

@[inline, reducible]
abbrev FdRep (k : Type u) (G : Type u) [Field k] [Monoid G] :
Type (u + 1)

The category of finite dimensional k-linear representations of a monoid G.

Instances For
    instance FdRep.instCoeSortFdRepType {k : Type u} {G : Type u} [Field k] [Monoid G] :
    CoeSort (FdRep k G) (Type u)
    def FdRep.ρ {k : Type u} {G : Type u} [Field k] [Monoid G] (V : FdRep k G) :

    The monoid homomorphism corresponding to the action of G onto V : FdRep k G.

    Instances For
      def FdRep.isoToLinearEquiv {k : Type u} {G : Type u} [Field k] [Monoid G] {V : FdRep k G} {W : FdRep k G} (i : V W) :

      The underlying LinearEquiv of an isomorphism of representations.

      Instances For
        theorem FdRep.Iso.conj_ρ {k : Type u} {G : Type u} [Field k] [Monoid G] {V : FdRep k G} {W : FdRep k G} (i : V W) (g : G) :
        @[simp]
        theorem FdRep.of_ρ {k : Type u} {G : Type u} [Field k] [Monoid G] {V : Type u} [AddCommGroup V] [Module k V] [FiniteDimensional k V] (ρ : Representation k G V) :
        (FdRep.of ρ).ρ = ρ
        def FdRep.of {k : Type u} {G : Type u} [Field k] [Monoid G] {V : Type u} [AddCommGroup V] [Module k V] [FiniteDimensional k V] (ρ : Representation k G V) :
        FdRep k G

        Lift an unbundled representation to FdRep.

        Instances For
          theorem FdRep.forget₂_ρ {k : Type u} {G : Type u} [Field k] [Monoid G] (V : FdRep k G) :
          theorem FdRep.finrank_hom_simple_simple {k : Type u} {G : Type u} [Field k] [Monoid G] [IsAlgClosed k] (V : FdRep k G) (W : FdRep k G) [CategoryTheory.Simple V] [CategoryTheory.Simple W] :
          FiniteDimensional.finrank k (V W) = if Nonempty (V W) then 1 else 0
          def FdRep.forget₂HomLinearEquiv {k : Type u} {G : Type u} [Field k] [Monoid G] (X : FdRep k G) (Y : FdRep k G) :
          ((CategoryTheory.forget₂ (FdRep k G) (Rep k G)).obj X (CategoryTheory.forget₂ (FdRep k G) (Rep k G)).obj Y) ≃ₗ[k] X Y

          The forgetful functor to Rep k G preserves hom-sets and their vector space structure.

          Instances For

            Auxiliary definition for FdRep.dualTensorIsoLinHom.

            Instances For

              When V and W are finite dimensional representations of a group G, the isomorphism dualTensorHomEquiv k V W of vector spaces induces an isomorphism of representations.

              Instances For
                @[simp]
                theorem FdRep.dualTensorIsoLinHom_hom_hom {k : Type u} {G : Type u} {V : Type u} [Field k] [Group G] [AddCommGroup V] [Module k V] [FiniteDimensional k V] (ρV : Representation k G V) (W : FdRep k G) :