Finitely generated subalgebras of a base change obtained from an element #
Main results #
exists_fg_and_mem_baseChange: given an elementxof a tensor productA ⊗[R] Bof twoR-algebrasAandB, there exists a finitely generated subalgebraCofBsuch thatxis contained inC ⊗[R] B.
theorem
exists_fg_and_mem_baseChange
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[CommSemiring A]
[Semiring B]
[Algebra R A]
[Algebra R B]
(x : TensorProduct R A B)
:
∃ (C : Subalgebra R B), C.FG ∧ x ∈ Subalgebra.baseChange A C