Polynomials and adjoining roots #
Main results #
Polynomial.instCommSemiringAdjoinSingleton, instCommRingAdjoinSingleton
: adjoining an element to a commutative (semi)ring gives a commutative (semi)ring
theorem
Algebra.adjoin_singleton_eq_range_aeval
(R : Type u)
{A : Type z}
[CommSemiring R]
[Semiring A]
[Algebra R A]
(x : A)
:
adjoin R {x} = (Polynomial.aeval x).range
@[simp]
theorem
Polynomial.aeval_mem_adjoin_singleton
(R : Type u)
{A : Type z}
[CommSemiring R]
[Semiring A]
[Algebra R A]
{p : Polynomial R}
(x : A)
:
(aeval x) p ∈ Algebra.adjoin R {x}
instance
Polynomial.instCommSemiringAdjoinSingleton
(R : Type u)
{A : Type z}
[CommSemiring R]
[Semiring A]
[Algebra R A]
(x : A)
:
CommSemiring ↥(Algebra.adjoin R {x})
Equations
instance
Polynomial.instCommRingAdjoinSingleton
{R : Type u_3}
{A : Type u_4}
[CommRing R]
[Ring A]
[Algebra R A]
(x : A)
:
CommRing ↥(Algebra.adjoin R {x})