Algebraic functions #
This file defines algebraic functions as the image of the algebraMap R[X] (R → S)
.
def
Polynomial.hasSMulPi
(R : Type u_1)
(S : Type u_2)
[Semiring R]
[SMul R S]
:
SMul (Polynomial R) (R → S)
This is not an instance as it forms a diamond with Pi.instSMul
.
See the instance_diamonds
test for details.
Equations
- Polynomial.hasSMulPi R S = { smul := fun (p : Polynomial R) (f : R → S) (x : R) => Polynomial.eval x p • f x }
Instances For
noncomputable def
Polynomial.hasSMulPi'
(R : Type u_1)
(S : Type u_2)
(T : Type u_3)
[CommSemiring R]
[Semiring S]
[Algebra R S]
[SMul S T]
:
SMul (Polynomial R) (S → T)
This is not an instance as it forms a diamond with Pi.instSMul
.
See the instance_diamonds
test for details.
Equations
- Polynomial.hasSMulPi' R S T = { smul := fun (p : Polynomial R) (f : S → T) (x : S) => (Polynomial.aeval x) p • f x }
Instances For
@[simp]
theorem
polynomial_smul_apply
(R : Type u_1)
(S : Type u_2)
[Semiring R]
[SMul R S]
(p : Polynomial R)
(f : R → S)
(x : R)
:
(p • f) x = Polynomial.eval x p • f x
@[simp]
theorem
polynomial_smul_apply'
(R : Type u_1)
(S : Type u_2)
(T : Type u_3)
[CommSemiring R]
[Semiring S]
[Algebra R S]
[SMul S T]
(p : Polynomial R)
(f : S → T)
(x : S)
:
(p • f) x = (Polynomial.aeval x) p • f x
noncomputable def
Polynomial.algebraPi
(R : Type u_1)
(S : Type u_2)
(T : Type u_3)
[CommSemiring R]
[CommSemiring S]
[CommSemiring T]
[Algebra R S]
[Algebra S T]
:
Algebra (Polynomial R) (S → T)
This is not an instance for the same reasons as Polynomial.hasSMulPi'
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
Polynomial.algebraMap_pi_eq_aeval
(R : Type u_1)
(S : Type u_2)
(T : Type u_3)
[CommSemiring R]
[CommSemiring S]
[CommSemiring T]
[Algebra R S]
[Algebra S T]
:
⇑(algebraMap (Polynomial R) (S → T)) = fun (p : Polynomial R) (z : S) => (algebraMap S T) ((aeval z) p)
@[simp]
theorem
Polynomial.algebraMap_pi_self_eq_eval
(R : Type u_1)
[CommSemiring R]
:
⇑(algebraMap (Polynomial R) (R → R)) = fun (p : Polynomial R) (z : R) => eval z p