Algebras over artinian rings #
In this file we collect results about algebras over artinian rings.
theorem
IsArtinianRing.isUnit_of_isIntegral_of_nonZeroDivisor
{R : Type u_1}
{A : Type u_2}
[CommRing R]
[IsArtinianRing R]
[CommRing A]
[Algebra R A]
{a : A}
(hi : IsIntegral R a)
(ha : a ∈ nonZeroDivisors A)
:
IsUnit a
In an R
-algebra over an artinian ring R
, if an element is integral and
is not a zero divisor, then it is a unit.
theorem
IsArtinianRing.isUnit_iff_nonZeroDivisor_of_isIntegral
{R : Type u_1}
{A : Type u_2}
[CommRing R]
[IsArtinianRing R]
[CommRing A]
[Algebra R A]
{a : A}
(hi : IsIntegral R a)
:
Integral element of an algebra over artinian ring R
is either a zero divisor or a unit.
theorem
IsArtinianRing.isUnit_of_nonZeroDivisor_of_isIntegral'
{R : Type u_1}
{A : Type u_2}
[CommRing R]
[IsArtinianRing R]
[CommRing A]
[Algebra R A]
[Algebra.IsIntegral R A]
{a : A}
(ha : a ∈ nonZeroDivisors A)
:
IsUnit a
In an R
-algebra over an artinian ring R
, if an element is integral and
is not a zero divisor, then it is a unit.
theorem
IsArtinianRing.isUnit_iff_nonZeroDivisor_of_isIntegral'
{R : Type u_1}
{A : Type u_2}
[CommRing R]
[IsArtinianRing R]
[CommRing A]
[Algebra R A]
[Algebra.IsIntegral R A]
{a : A}
:
Integral element of an algebra over artinian ring R
is either a zero divisor or a unit.
theorem
IsArtinianRing.isUnit_submonoid_eq_of_isIntegral
{R : Type u_1}
{A : Type u_2}
[CommRing R]
[IsArtinianRing R]
[CommRing A]
[Algebra R A]
[Algebra.IsIntegral R A]
: