Documentation

Mathlib.RingTheory.Bialgebra.GroupLike

Group-like elements in a bialgebra #

This file proves that group-like elements in a bialgebra form a monoid.

theorem IsGroupLikeElem.one {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Bialgebra R A] :

In a bialgebra, 1 is a group-like element.

theorem IsGroupLikeElem.mul {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Bialgebra R A] {a b : A} (ha : IsGroupLikeElem R a) (hb : IsGroupLikeElem R b) :

Group-like elements in a bialgebra are stable under multiplication.

def groupLikeSubmonoid (R : Type u_1) (A : Type u_2) [CommSemiring R] [Semiring A] [Bialgebra R A] :

The group-like elements form a submonoid.

Equations
Instances For
    theorem IsGroupLikeElem.pow {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Bialgebra R A] {a : A} {n : } (ha : IsGroupLikeElem R a) :

    Group-like elements in a bialgebra are stable under power.

    theorem IsGroupLikeElem.of_mul_eq_one {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Bialgebra R A] {a b : A} (hab : a * b = 1) (hba : b * a = 1) (ha : IsGroupLikeElem R a) :

    Group-like elements in a bialgebra are stable under inverses, when they exist.

    theorem isGroupLikeElem_iff_of_mul_eq_one {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Bialgebra R A] {a b : A} (hab : a * b = 1) (hba : b * a = 1) :

    Group-like elements in a bialgebra are stable under inverses, when they exist.

    @[simp]
    theorem isGroupLikeElem_unitsInv {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Bialgebra R A] {u : Aˣ} :
    theorem IsGroupLikeElem.of_unitsInv {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Bialgebra R A] {u : Aˣ} :

    Alias of the forward direction of isGroupLikeElem_unitsInv.

    theorem IsGroupLikeElem.unitsInv {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Bialgebra R A] {u : Aˣ} :

    Alias of the reverse direction of isGroupLikeElem_unitsInv.

    instance GroupLike.instOne {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Bialgebra R A] :
    Equations
    instance GroupLike.instMul {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Bialgebra R A] :
    Equations
    instance GroupLike.instPowNat {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Bialgebra R A] :
    Equations
    @[simp]
    theorem GroupLike.val_one {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Bialgebra R A] :
    1 = 1
    @[simp]
    theorem GroupLike.val_mul {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Bialgebra R A] (a b : GroupLike R A) :
    ↑(a * b) = a * b
    @[simp]
    theorem GroupLike.val_pow {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Bialgebra R A] (a : GroupLike R A) (n : ) :
    ↑(a ^ n) = a ^ n
    def GroupLike.valMonoidHom (R : Type u_1) (A : Type u_2) [CommSemiring R] [Semiring A] [Bialgebra R A] :

    GroupLike.val as a monoid hom.

    Equations
    Instances For
      @[simp]
      theorem GroupLike.valMonoidHom_apply (R : Type u_1) (A : Type u_2) [CommSemiring R] [Semiring A] [Bialgebra R A] (self : GroupLike R A) :
      (valMonoidHom R A) self = self