Group-like elements in a bialgebra #
This file proves that group-like elements in a bialgebra form a monoid.
theorem
IsGroupLikeElem.one
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[Bialgebra R A]
:
IsGroupLikeElem R 1
In a bialgebra, 1 is a group-like element.
theorem
IsGroupLikeElem.mul
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[Bialgebra R A]
{a b : A}
(ha : IsGroupLikeElem R a)
(hb : IsGroupLikeElem R b)
:
IsGroupLikeElem R (a * b)
Group-like elements in a bialgebra are stable under multiplication.
def
groupLikeSubmonoid
(R : Type u_1)
(A : Type u_2)
[CommSemiring R]
[Semiring A]
[Bialgebra R A]
:
The group-like elements form a submonoid.
Equations
- groupLikeSubmonoid R A = { carrier := {a : A | IsGroupLikeElem R a}, mul_mem' := ⋯, one_mem' := ⋯ }
Instances For
theorem
IsGroupLikeElem.pow
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[Bialgebra R A]
{a : A}
{n : ℕ}
(ha : IsGroupLikeElem R a)
:
IsGroupLikeElem R (a ^ n)
Group-like elements in a bialgebra are stable under power.
theorem
IsGroupLikeElem.of_mul_eq_one
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[Bialgebra R A]
{a b : A}
(hab : a * b = 1)
(hba : b * a = 1)
(ha : IsGroupLikeElem R a)
:
IsGroupLikeElem R b
Group-like elements in a bialgebra are stable under inverses, when they exist.
theorem
isGroupLikeElem_iff_of_mul_eq_one
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[Bialgebra R A]
{a b : A}
(hab : a * b = 1)
(hba : b * a = 1)
:
Group-like elements in a bialgebra are stable under inverses, when they exist.
@[simp]
theorem
isGroupLikeElem_unitsInv
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[Bialgebra R A]
{u : Aˣ}
:
theorem
IsGroupLikeElem.of_unitsInv
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[Bialgebra R A]
{u : Aˣ}
:
IsGroupLikeElem R ↑u⁻¹ → IsGroupLikeElem R ↑u
Alias of the forward direction of isGroupLikeElem_unitsInv.
theorem
IsGroupLikeElem.unitsInv
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[Bialgebra R A]
{u : Aˣ}
:
IsGroupLikeElem R ↑u → IsGroupLikeElem R ↑u⁻¹
Alias of the reverse direction of isGroupLikeElem_unitsInv.
instance
GroupLike.instOne
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[Bialgebra R A]
:
@[simp]
theorem
GroupLike.val_one
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[Bialgebra R A]
:
instance
GroupLike.instMonoid
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[Bialgebra R A]
:
Equations
def
GroupLike.valMonoidHom
(R : Type u_1)
(A : Type u_2)
[CommSemiring R]
[Semiring A]
[Bialgebra R A]
:
GroupLike.val as a monoid hom.
Equations
- GroupLike.valMonoidHom R A = { toFun := GroupLike.val, map_one' := ⋯, map_mul' := ⋯ }
Instances For
@[simp]
theorem
GroupLike.valMonoidHom_apply
(R : Type u_1)
(A : Type u_2)
[CommSemiring R]
[Semiring A]
[Bialgebra R A]
(self : GroupLike R A)
:
instance
GroupLike.instCommMonoid
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[CommSemiring A]
[Bialgebra R A]
:
CommMonoid (GroupLike R A)